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PREFACE 

From about the mid-1950s to the early 1960s, the field of digital filtering, 
which was based on processing data from various sources on a mainframe com- 
puter, played a key role in the processing of telemetry data. During this time 
period the processing of airborne radar data was based on analog computer 
technology. In this application area, an airborne radar used in tactical aircraft 
could detect the radar return from another low-flying aircraft in the environment 
of competing radar return from the ground. This was accomplished by the pro- 
cessing and filtering of the radar signal by means of analog circuitry in order to 
take advantage of the Doppler frequency shift due to the velocity of the 
observed aircraft. This analog implementation was lacking in the flexibility and 
capability inherent in programmable digital signal processor technology, which 
was just coming onto the technological scene. 

Developments and powerful technological advances in integrated digital elec- 
tronics coalesced soon after the early 1960s to lay the foundations for modem 
digital signal processing. Continuing developments in techniques and support- 
ing technology, particularly very large scale integrated digital electronics cir- 
cuitry, have resulted in significant advances in many areas. These areas include 
consumer products, medical products, automotive systems, aerospace systems, 
geophysical systems, and defense-related systems. Hence, this is a particularly 
appropriate time for Control and Dynamic Systems to address the area of 
"Digital Signal Processing Systems: Implementation Techniques," the theme for 
this volume. 

The first contribution to this volume is "VLSI Signal Processing," by James 
B. Burr, Weiping Li, and Allen M. Peterson. This contribution gives an 
overview of digital implementations and techniques for high-performance digi- 
tal signal processing. The authors are to be most highly complimented for pro- 
ducing a self contained treatment with a high degree of clarity of this major and 
broad topic which underpins the implementation of digital signal processing 
systems. Needless to say, this is a most appropriate contribution with which to 
begin this volume. 

The next contribution is "Recurrent Neural Networks for Adaptive Filtering," 
by Simon Haykin. Adaptive filtering, which is an inherently nonlinear process, 
arises in such major application areas as identification, equalization (inverse 
modeling), prediction, and noise cancellation. This contribution presents rather 
powerfully effective neural network techniques which are ideally suited to adap- 
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tive filtering applications. As such this is also a most important contribution to 
this volume. 

The next contribution is "Multiscale Signal Processing: From QMF to 
Wavelets," by Albert Benveniste. It is noted in this contribution that multirate 
filtering, multiscale signal analysis, and multiresolution are, in fact, closely 
related to each other. The techniques of Quadrature Mirror Filters (QMF) and 
orthonormal wavelet transforms are presented for dealing with these important 
problems. 

The next contribution is "The Design of Frequency Sampling Filters," by 
Peter A. Stubberud and Cornelius T. Leondes. Many digital signal processing 
systems require linear phase filtering. Digital linear phase filters designed by 
either the window design or the optimal filter design method are generally 
implemented by direct convolution, which uses the filter's impulse response as 
filter coefficients. In this contribution, frequency sampling filters use frequency 
samples, which are specific values from the filter's frequency response, as coef- 
ficients in the filter's implementation, and are presented as an effective alterna- 
tive means for linear phase filtering implementation. 

The next contribution is "Low-Complexity Filter-Banks for Adaptive and 
Other Applications," by Mukund Padmanabhan and Ken Martin. Filter-banks, 
single-input/multiple-output structures, find use in a wide variety of applica- 
tions such as subband coding, frequency domain adaptive filtering, communica- 
tion systems, frequency estimation, and transform computations. While a great 
deal of attention has been focused in the literature on their design and proper- 
ties, it is only recently that the issues of their implementation have started to 
receive treatment in the literature. This contribution is an in-depth treatment of 
implementation techniques with a number of important illustrative examples. 

The next contribution is "A Discrete Time Nonrecursive Linear Phase 
Transport Processor Design Technique," by Peter A. Stubberud and Cornelius T. 
Leondes. A discrete time transport processor is a discrete time system that is 
composed only of delays, adds, and subtracts; such that more complex opera- 
tions including multiplication are not required in their implementation. This 
contribution develops the details of the implementation of such signal proces- 
sors and illustrates their applications. For instance, such processors are well 
suited for the design and implementation of frequency-selective linear phase 
discrete time transport processors. 

The next contribution is "Blind Deconvolution: Channel Identification and 
Equalization," by D. Hatzinakos. Blind deconvolution refers to the problem of 
separating the two convolved signals {f(n)}, discrete filter impulse response, 
and {x(n)}, discrete time input signal to the filter, when both signals are 
unknown or partially known. This is an important problem in seismic data 
analysis, transmission monitoring, deblurring of images in digital image pro- 
cessing, multipoint network communications, echo cancellation in wireless tele- 
phony, digital radio links over fading channels, and other applications when 
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there is either limited knowledge of the signals due to practical constraints or a 
sudden change in the properties of the signals. This contribution presents an in- 
depth treatment of the major approaches to the problem of blind deconvolution 
with numerous illustrative examples. 

The final contribution to this volume is "Time-Varying System Identification 
and Channel Equalization Using Wavelets and Higher-Order Statistics," by 
Michail K. Tsatsanis. This contribution is an in-depth treatment of basis expan- 
sion ideas to identify time-varying (TV) systems and equalize rapidly fading 
channels. A number of illustrative examples make evident the great potential of 
basis expansion tools for addressing challenging questions regarding adaptive 
and blind estimation of these TV channels. The powerful results presented in 
this contribution are also, of course, importantly applicable to the other signifi- 
cant problems already mentioned. As such this is a most appropriate contribu- 
tion with which to conclude this volume. 

This volume on implementation techniques in digital signal processing sys- 
tems clearly reveals the significance and power of the techniques that are avail- 
able, and, with further development, the essential role they will play as applied 
to a wide variety of areas. The authors are all to be highly commended for their 
splendid contributions to this volume, which will provide a significant and 
unique international reference source for students, research workers, practicing 
engineers, and others for years to come. 
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VLSI Signal Processing 

James B. Burr 
Electrical Engineering Department 
Stanford University, Stanford, CA 94305 

Weiping Li 
Electrical Engineering and Computer Science Department 
Lehigh University, Bethlehem, PA 18015 

Allen M. Peterson 
Electrical Engineering Department 
Stanford University, Stanford, CA 94305 

I n t r o d u c t i o n  

This chapter gives an overview of digital VLSI implementations and dis- 
cusses techniques for high performance digital signal processing. It presents 
some basic digital VLSI building blocks useful for digital signal processing 
and a set of techniques for estimating chip area, performance, and power 
consumption in the early stages of design to facilitate architectural explo- 
ration. It also shows how technology scaling rules can be included in the 
estimation process. It then uses the estimation techniques to predict ca- 
pacity and performance of a variety of digital architectures. 

The assumption about the readership of this chapter is that the reader 
knows about signal processing algorithms very well, has little knowledge 
about VLSI design, and would like to understand how to implement signal 
processing algorithms using VLSI. We hope to put enough relevant mate- 
rials for the reader to understand the opportunities and problems in VLSI 
signal processing. 

CONTROL AND DYNAMIC SYSTEMS, VOL. 68 
Copyright �9 1995 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 
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2 Bas ic  C M O S  digital  c ircuits  

This section is not intended to be a thorough presentation of digital logic 
design, as there are many excellent sources for this [MCS0, WF82, WE85, 
HP89]. Rather, we highlight specific structures which are especially use- 
ful in designing digital elements for signal processing. Each element has 
a behavioral specification which defines its funtionality, a graphical sym- 
bol which is used in a circuit diagram, and circuit description(s) at the 
transistor level. 

There are many logic design styles to choose from in implementing 
CMOS circuits (see Table 1). Logic design styles achieve different tradeoffs 
in speed, power, and area. The highest speed logic families also tend to 
consume the most power. The most compact tend to be slow. 

[year  [ 

1982 
1987 
1987 
1990 
1991 

what 

Static 

who 

Domino [KLL82] 
DCVSL 
DPTL 
CPL 

L-DPTL 

[CP87] 
[PSS87] 

[YYN+90] 
[LR91] 

description 

Fully static CMOS 
Domino logic 
Differential cascode voltage switch logic 
Differential pass transistor logic 
Complementary pass transistor logic 
Latched differential pass transistor logic 

Table 1" Logic design styles. 

Fully static logic offers high speed, reasonably small area, and low power. 
Domino logic [KLL82] offers less area but higher power, and is dynamic. 
Differential cascode voltage switch logic (DCVSL) [CP87] is popular in 
asynchronous design because each complex logic gate generates its own 
completion signal. It is quite high power, however, since every output 
toggles on every cycle. Complementary pass-transistor logic (CPL) offers 
modest performance, is compact, and low power. 

For very low voltage operation, fully static works better than dynamic 
or pass transistor logics since dynamic nodes leak too fast and pass transis- 
tor logics normally require N-transistors to pass ones. The best logic style 
for very low voltage operation reported to date is latched differential pass 
transistor logic (L-DPTL) [La91], which uses N-transistors to pull down 
one side or the other of a cross coupled inverter. This style is very similar 
to CPL or DPTL [PSS87], but the use of inverters rather than cross coupled 
P-transistors turns the output stage into a differential sense amplifier. A 
static latch can be implemented with only two additional pass transistors, 
turning the output stage into a 6-transistor SRAM cell. L-DPTL is espe- 
cially effective at low voltage when the threshold voltage of the pass devices 
is reduced to around 200mV. 

Some basic CMOS digital circuits are presented in this section. Because 
these circuits are used in VLSI designs frequently, the most efficient design 
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in terms of size and speed makes a big difference in system performance. 
The most interesting circuit is the exclusive or (XOR) gate which plays a 
crucial role in many digital systems. Unless specified, we mainly use static 
logic style. 

1. Transmission Gate 

Behavior of a transmission gate is specified as follows: 

O u t -  / In if C - 1  

( HI if C -  0 

where HI means high impedance. The symbol and a circuit diagram 
of a CMOS transmission gate is shown in Figure 1. 

In ~ Out In 

C 

�9 

C 

Out 

Figure 1" Transmission gate 

When the control signal "C" is high, the transmission gate passes the 
input "In" to the output "Out". When "C" is low, "In" and "Out" are 
isolated from each other. Therefore, a transmission gate is actually 
a CMOS switch. A reason to use a transmission gate, which consists 
of a pair of N and P transistors, as a switch instead of a single N or 
P transistor is to prevent threshold drop. To illustrate this point, a 
single N-transistor is shown in Figure 2 as a switch. 

C 

I 
Out 

2_ 
+ C 

Figure 2" Pass transistor switch 

When the control signal "C" is high (5V), the input signal "In" should 
be passed to the output "Out". If "In" is low (0V), the capacitor 
discharges through the switch transistor so that  "Out" becomes low 
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. 

(0V). However, if "In" is originally high (5V) and "Out" is originally 
low (0V), the capacitor is charged upto 5V-Vmh through the switch 
transistor, where VN,h is the threshold voltage of the N-transistor. 
The output becomes high with a threshold drop (5V-V2vth). Therefore 
an N-transistor can pass a good "0" but not a good "1". On the 
other hand, a P transistor can pass a good "1" but not a good "0". 
To prevent threshold drop for both "1" and "0", a pair of N and P 
transistors are used in the transmission gate. 

Inverter 

An inverter is specified as follows: 

! 

O u t -  In 

The symbol and a circuit diagram are shown in Figure 3. 

I n _ _ _ n _ _ ~  Out In Out 

Figure 3: Inverter 

When the input signal "In" is high, the N-transistor "pulls down" the 
output node "Out". When "In" is low, the P-transistor "pulls up" 
the output node "Out". 

3. Nand Gate 

The logic specification of a nand gate is as follows: 

Out - In1 �9 In2 

The symbol and a circuit diagram are shown in Figure 4. The two N- 
transistors connected in series pull down the output node when both 
inputs are high. The output node is pulled up when one of the two 
inputs is low. 

4. Nor Gate 

A nor gate is specified as follows: 

Out - Inl  + In2 

Figure 5 shows the symbol and a circuit diagram of a nor gate. In 
a nor gate, the two pull-down N-transistos are connected in parallel 
and the two pull-up P-transistors are in series. 
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/ 

inl I IW Inl ~ Out ~ Out 

t J -  In2 

In2 

Figure 4" NAND gate 

Out 

In2 

Inl 

Inl 

In2 ! 
+ 

Figure 5: NOR gate 

Out 

! 

5. Tri-State Inverter 

A tri-state inverter is specified as follows: 

In if C -  1 
Out - 

HI if C - 0 

The name of this circuit comes from the fact that  the output node 
"Out" can be either "1" or "0" or high impedance. The symbol and 
a circuit diagram are shown in Figure 6. A tri-state inverter can also 
be implemented by cascading an inverter with a transmission gate 
as shown in Figure 7. An interesting question is whether we can 
change the order of cascading the inverter and the transmission gate? 
The answer is no because, with the inverter at the output, there are 
only two unpredictable states "1" or "0" instead of three. Since the 
output is unpredictable when the control signal "C" is low, such a 
circuit should be avoided. 
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In 

~ C  0 ~  

Out 

Figure 6" Tri-state inverter 

In 

C 

Out 

/ 

c 

In 

C 

+ 

Out 

C 

Figure 7" An alternative tri-state inverter circuit 

6. Multiplexer 

Multiplexer is a circuit to selectively pass one of two inputs to the 
output depending on a control signal. The behavior of a multiplexer 
can be written as follows: 

O u t -  / Inl  if C - 1  

L In2 if C -  0 

The symbol and two multiplexer circuits are shown in Figure 8. The 
first multiplexer circuit consists of two transmission gates with com- 
plementary controls. The second circuit uses three nand gates plus an 
inverter and thus requires 14 transistors versus 6 transistors needed in 
the first circuit (an inverter is needed to generate the C signal). The 
second circuit with a higher transistor count provides better driving 
capability to the output because the resistance between the output 
node and either Vdd or Gnd is limited to the transistors in the output 
nand gate. On the other hand, the driving capability of the first cir- 
cuit depends on the input signals. The resistance between the output 
node and a power source (either Vdd or Gnd) can be very large if 
many transmission gates are cascaded in series. 
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C 

0 
Inl 

c . I 
�9 

In2 

(a) 

Inl _11 

In2!O 

C 

Out 

Inl 

Out 

In2 

/k 
(b) 

Figure 8" Multiplexer 

Out 

7. Demultiplexer 

A demultiplexer performs the opposite function of a multiplexer, i.e., 
it selectively passes the input to one of two outputs  depending on a 
control signal. The behavior of a demultiplexer is usually specified as 
follows: 

Out l  - In if C - 1 

Out2 - In if C - 0 

The symbol and two demultiplexer circuits are shown in Figure 9. 
It is interesting to note that  the above behavior specification of the 
demultiplexer is actually incomplete. This is why the two circuits 
both satisfy the demultiplexer behavior specification but they are not 
equivalent to each other. In the first circuit, when the input is passed 
to one of the outputs,  the other output  node is high impedance. On 
the other hand, it is "0" in the second circuit. This is a good exam- 
ple of how an incomplete specification may lead to some unexpected 
behavior of a design. 

8. Exclusive OR Gate 

Exclusive OR (XOR) gate is an interesting unit to be designed using 
CMOS circuits. Its behavior specification can be given as follows" 

O u t -  / 1 if I n i ~ : I n 2  

( 0 if I n l - I n 2  
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In 

0 
Outl 

In _1 
] o{ oust2 

In 

Outl 

j out  
o 

Out2 

Ic 
(b) 

Figure 9" Demultiplexer 

J~ 
(a) 

The symbol for an XOR gate is shown in Figure 10. There are many 
different ways to design an XOR gate. We discuss 10 of them with 
transistor counts range from 22 to 3. 

Inl > 
In2 

Out 

Figure 10" XOR gate symbol 

(a) XOR-A 

From the above behavior specification, we can obtain a logic 
relationship of the output  with the inputs as follows: 

Out = Inl .In2 4- Inl . In2 

A direct implementat ion of this logic relationship requires 22 
transistors as shown in Figure 11. Because logic "and" and logic 
"or" are implemented in CMOS based on inverting nand and nor 
outputs  respectively, the transistor count is high in such a direct 
design. 

(b) XOR-B 

Since "nand" and "nor" require less transistors than "and" and 
"or" in CMOS design, one can write the XOR logic relationship 
based on "nand" and "nor" as follows: 

Out - Inl �9 In2 �9 Inl �9 In2 
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In! ~ ~ ' O ~  ~ - - - ~  i 

Figure 11" XOR gate circuit-a (22T) 

Out 

An implementation of this logic relationship requires 16 transis- 
tors as shown in Figure 12. This would be the most efficient 
XOR circuit in terms of transistor count if "nand" gate, "nor" 
gate, and inverter were the lowest level units and all other logic 
circuits had to be built upon them. 

Inl 

In2 

J 

Out 

Figure 12" XOR gate circuit-b (16T) 

(c) XOR-C 

Inl 

In2 

? 

Out 

Figure 13: XOR gate circuit-c (12T) 

A smaller transistor count can be obtained for an XOR gate 
as shown in Figure 13. In this XOR circuit, the two inverters 
simply generate the complements of the two input signals. The 
four pairs of transistors determine the output value according to 
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(d) 

the four possible input cases with a one-to-one correspondance. 
For example, in the case of Inl--1 and In2=0, the upper left pair 
of P-transistors pull up the output node and the rest three paths 
to Vdd and Gnd are off. This circuit requires 12 transistors with 
4 for the two inverters and 8 for the four pull-up and pull-down 
paths. 

XOR-D 

Comparing the XOR-B circuit with the second multiplexer cir- 
cuit in Figure 8, one can notice that an XOR gate is almost the 
same as a multiplexer. The multiplexer circuit can be changed to 
an XOR circuit by adding one more inverter so that the original 
"In1" node takes the complement of the "In2" signal. Concep- 
tually, an XOR gate can be considered as a multiplexer with 
one input selectively controls the passage of the other input sig- 
nal or its complement. Using this concept, one can reduce the 
transistor count of an XOR circuit by using the first multiplexer 
circuit shown in Figure 8. A circuit diagram of such an XOR 
gate design is shown in Figure 14 with a transistor count of 8. As 
shown here, "Inl" signal and its complement control the passage 
of "In2" or its complement. When I n l - 0  and In2 is passed to 
the output, the driving capability of the output depends on the 
"In2" signal. 

Inl 

I 
(3 

�9 

In2 ~ 3  

Out 

Figure 14" XOR gate circuit-d (8T) 

(e) XOR-E 

To push further the concept of an XOR gate being equivalent to 
a multiplexer, one may think 4 transistors would be enough for 
an XOR gate circuit as shown in Figure 15. The thought is that  
the inverter generates the complement of In2 and In1 controls 
the two transistor switches to pass either In2 or its complement. 
However, as discussed earlier, this circuit has the threshold drop 
problem in two input cases, namely, when In1--1 and In2-0 ,  
the output may be 5V-VNth, and when In1--0 and In2-0 ,  the 
output may be V vth. 
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In2 

I 

I 

Figure 15" XOR gate circuit-e (4T) 

Out 

(t) 

(g) 

XOR-F 

One way to solve the threshold drop problem is to use an inverter 
at the output to restore the voltage level as shown in Figure 16. 
The input inverter is changed to the lower path because the 
logic relationship has to be maintained. Although there are still 
threshold drops at the output of the pass-transistors in two input 
cases, the output inverter can function correctly so that  the final 
output voltage is either 5V or 0V provided by the Vdd or Gnd in 
the output inverter. However, in the two input cases that  cause 
threshold drop, the output inverter becomes slower than usual 
because its input voltage doesn't go to 5V or 0V. 

In2 

I I 

I 
) 

Inl 

Out 

Figure 16" XOR gate circuit-f (6T) 

XOR-G 

Another way to solve the threshold drop problem is to add a 
transmission gate as shown in Figure 17. As discussed in XOR- 
E, the threshold drop happens when In2-0 .  The added trans- 
mission gate passes Inl  when In2=0 and thus the output doesn't 
have a threshold drop anymore. Note that  the logic value of the 
XOR output is supposed to be the same as Inl  when In2-0 .  This 
circuit doesn't provide as a strong driving capability as XOR-F 
which has an inverter at the output. Therefore, this circuit can 
be slow when many of them are cascaded in series. 
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In2 

Inl 

I ] 

Figure 17: XOR gate circuit-g (6T) 

Out 

(h) XOR-H 

Inl 

In2 

J 

I 
II I 

Out 

Figure 18: XOR gate circuit-h (4T) 

Figure 18 shows another possibility for a 4-transistor XOR gate. 
The two N-transistors in series pull down the output node when 
both inputs are high. When one of the inputs is low and the other 
is high, the cross-coupled P-transistor pair passes the high input 
to the output. When both inputs are low, both P-transistors 
pass the low signal to the output. However, there is a threshold 
drop in last case ( I n l - I n 2 - 0 ) .  This is better than XOR-E which 
has threshold drop in two input cases. 

(i) XOR-I 

To solve the threshold drop problem in XOR-H, an inverter can 
be used to restore the output voltage level in a similar way to 
that in XOR-F. Because the added inverter changes the logic 
value, the original 4 transistors have to be rearranged as shown 
in Figure 19. This circuit uses the same number of transistors 
(6) as that in XOR-F but has only one input case causing a slow 
operation of the output inverter versus two cases in XOR-F. 
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Inl 

In2 

Figure 19- XOR gate circuit-i (6T) 

Out  

(j) XOR-J 
The XOR gate circuits discussed so far are all static CMOS 
circuits. If dynamic logic is allowed in a design, it is possible 
to implement an XOR gate using only 3 transistors as shown in 
Figure 20. Compared with the circuit in XOR-H, this circuit 
uses a single N-transistor instead of two and the N-transistor is 
controlled by a clock signal instead of the inputs. When clock is 
high, the circuit is in precharging phase and the output is pulled 
down. When clock goes low, the circuit goes into evaluating 
phase and the output logic value is determined by the inputs. If 
both inputs are high, the two P-transistors are both off and the 
output stays low as in the precharging phase. If both inputs are 
low, the P-transistors would not be on either because the output 
node was precharged to low and therefore the output node stays 
low. Note that this is the threshold drop case in XOR-H. If 
one of the inputs is low and the other is high, the cross-coupled 
P-transistor pair passes the high signal to the output. 

In summary, XOR gate is an interesting logic function with many 
different ways to implement it using CMOS circuits. From the 10 
circuits discussed above, 4 and 3 are the minimum transistor counts 
for static and dynamic logic XOR gate respectively. However, the two 
4-transistor static XOR circuits (XOR-E and XOR-H) suffer from the 
threshold drop at the output which may not be tolerable. Among 
the 6-transistor XOR circuits (XOR-F, XOR-G, and XOR-I), XOR- 
I performs the best in terms of speed, especially when many XOR 
gates are cascaded in series. In [HL89], simulation results on various 
XOR circuits are reported. All the XOR circuits are simulated using 
LSIM, SPICE [Nag75] and IRSIM [Ter82]. Figure 21 shows the setup 
for simulating the XOR circuits. The input signals are chosen to make 
sure that all possible combinations of transitions are simulated. 

The most interesting result of this study is the comparison of XOR-G 
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Figure 20: Dynamic XOR gate circuit (3T) 

outl out2 out7 out8 

Figure 21" Setup for simulating XOR gate circuits 

. 

and XOR-I circuits. Both circuits have the same number of transistors 
(six). The single-stage worst case performance of XOR-I circuit is a 
little better than that of XOR-G circuit. Further analysis indicates 
that XOR-I circuit is much faster than XOR-G circuit in applications 
where many cascaded XOR gates are used in a chain. Figure 22 plots 
the delay time vs. number of cascaded XOR stages for both circuits. 

This simulation shows that XOR-I circuit is indeed much faster than 
XOR-G circuit. The reason is that the threshold drop problem of 
XOR-I circuit is isolated from stage to stage because of the restoring 
inverter. This is why the delay of XOR-I circuit chain is growing 
linearly with the number of stages as shown in Figure 22. For XOR- 
G circuit chain, the delay is much worse than the linear relationship 
because each stage introduces both series resistance and parallel ca- 
pacitance. The delay of XOR-G circuit chain is approximately pro- 
portional to square of the number of stages as shown in and Figure 
22. 

Latch (Register) 

Latches play an important role in any digital design, especially if the 
design is pipelined. The behavior of a latch can be written as follows: 

O u t ( n )  = I n ( n - l )  

where n is the time index. The right latch to use depends on the 
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Figure 22" Delay Time vs. Number of Cascaded XOR Stages 
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clocking discipline and the desired performance. Some clocking styles 
are safer than others. We have been using nonoverlapping two-phase 
clocks in most of our chips to date. Most of our designs use either 
the fully static or pseudo-static latch shown in Figure 23. There is 
a good section on latches in Weste and Eshraghian's book [WE85]. 
There are also many clocking styles to choose from in implementing 
CMOS circuits (see Table 2). Each style achieves different tradeoffs in 
speed, power, area, and operating margin. The highest performance 
clocking schemes tend to have the narrowest operating margins. Wide 
operating margins generally cost area and power. 

dynamic 

pseudo 
static 

fully 
static 

tgate 

clocked 
feedback 

L-DPTL 

...J_ 
__[-I 

half full 

Figure 23: latches 

Clocked CMOS (C2MOS) [SOA73] is a dynamic scheme relying on 
the availability of two clocks which may overlap. NORA [GM83] is 
another dynamic scheme which embeds the clocks with the logic in 
alternating pullup and pulldown stacks. True single phase clocking 
(TSPC) is discussed in [:IKS87, Kar88, YS89]. This is a dynamic 
clocking strategy with good performance. Its principal advantage is 
its robustness. Although the transistor count of a TSPC latch is 
relatively high (see Figure 24), the layout is quite compact. TSPC-1 
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year ] 

1973 
1980 
1983 
1987 
1988 
1989 

what who ]description 

C2MOS [SOA73] Clocked CMOS 
2phase [MC80]  Nonoverlapping 2-phase clocking 
NORA [GM83] Race-free dynamic CMOS 

TSPC-1 [3KS87] True single-phase clocking, version 1 
SSPC [Lu88a] Safe single-phase clocking 

TSPC-2 [YS89]  True single-phase clocking, version 2 

Table 2: Clocking styles. 

has the disadvantage that the internal node is precharged during clkL, 
resulting in excess power dissipation. Latch type and clocking style 
are closely related. C2MOS, NORA, and TSPC all have their own 
latch circuits (see Figure 24). 

clkL i clk 

TSPC 
c%os 

Figure 24: C2MOS and TSPC dynamic latches. 

Nonoverlapping two phase clocking is discussed in Mead and Conway 
[MCS0]. This scheme has wide operating margins but can be quite 
slow at high frequencies due to the mandatory gaps, and is fairly 
high power. The non-overlap requirement can be specified using the 
following equation: 

r 1 6 2  for all t 

Figure 25 shows a typical clock cycle of the two-phase non-overlap 
clocking scheme. There are actually four time intervals in a cycle. 
The first one is r high and r low. During this time interval, an input 
signal is clocked into the latch. The second time interval is both r 
and r low, which is referred to as gap(el ~ r This gap is needed 
to ensure the non-overlap requirement. The third time interval is r 
low and r high. This is the time for the latch to clock out the signal 
stored in it. After this time interval, both r and r are low again 
to form gap(C2 ---* r The two gaps in a clock period ensures that 
a latch is either clocking a signal in or clocking a signal out but not 
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l l ? 
gap(q~l---~2)q ~-- q ~- gap(~--~q~l) 

Figure 25" Non-overlap two-phase clock waveforms 

both. Obviously, the advantage of this kind of clocking scheme is its 
clear timing definition for avoiding race and hazard. The price paid 
for achieving this timing safety is the extra delay introduced by the 
gap. To illustrate how the gaps affect the speed, a simple system is 
shown in Figure 26. Assume that the combinational logic between the 
two latches has a maximum delay of Dm~ seconds. The time from 
r going high to r coming low has to be greater than or equal to 
D , ~ .  Thus the gap from r coming low to r going high is wasted 
time. The minimum clock period for the system to work is 

Tm~,~ - Dm~ + gap(el --~ r 

_1 I J Logic I J I -I RI ] I ] 
T 

~1 cP2 

Dmax 

CPl q~2 

out  

Figure 26: A simple latched system 

In the circuit diagram of the static latch shown in Figure 23, the tran- 
sistor si~es of the inverters are very important. The two feedforward 
inverters should be stronger than the two feedback inverters. We have 
been using 16:2 for the feedforward inverters and 3:8 for the feedback 
inverters. The feedback inverters have two major functions. One is 
to make the latch static by feeding back the correct logic value to 
the input of the feedforward inverters and the other is to speed up 
the latch by overcoming the threshold drop of the two pass-transistor 
switches. 

Another issue in using two-phase non-overlap clocking scheme is clock 
skew caused by qualified r Figure 27 shows how a latch can be used 
with a qualified ~1 clock. Qualified clock is a way to control the 
register transfer activities using a control signal. When the control 
signal En is low, the r signal is blocked from turning the input switch 
on and thus the register transfer is stopped. When En is high, the 
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transfer is resumed. A problem of using such a qualified r clock is 
the delay caused by the logic circuit between the r signal and the 
Qr signal supplied to the register input switch. This delay may cause 
an overlap of the clock signal supplied to the first pass-transistor and 
r signal. However, qualified clocks can result in significant power 
savings over techniques which use a separate load signal and clock 
latches on every cycle. 

In R 

Con (P2 

Out 

Figure 27" Qualified r clock 

Using qualified r signals, a multiplexer can be merged with a register 
as shown in Figure 28. When the control signal is high, in1 is clocked 
into the register by r Otherwise, in2 is clocked into the register. 

(Pl.C 

Inl I 1 
,, ] 

In2 t~J 

I 

j ~ - ~  Out 

% 

Figure 28- Two input register 

Clock distribution at the chip level is extremely important, especially 
in high speed, low power systems using qualified clocks. It is becoming 
more difficult as chips grow larger and feature sizes become smaller. 
In our designs, we qualify all clocks with identical circuits, so that 
both qualified and unqualified clocks have the same latency. We then 
tune the transistor sizes to compensate for differences in loading. 

10. Memory 

Storage density is an important issue in large digital systems, so mem- 
ory optimization is important. One-transistor (1T) dynamic random 
access memories (DRAMs) have the highest density. Six-transistor 
(6T) static memories (SRAMs) consume the least power. A typical 
1T DRAM cell measures 6,~ x 11,~ (66,~ 2) [KBD+90]. A typical 4T 
SRAM measures 12A x 20~ (240~ 2) [AOA+90]. Shift registers can of- 
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ten be implemented with either SRAM or DRAM, saving substantial 
amounts of area and power. 
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Figure 29: dynamic memory cells 

DRAM 

DRAM cells must be refreshed due to leakage current [CTTF79], and 
therefore consume more power than SRAMs. Normally the refresh 
power is a small fraction of the operating power, but could be sig- 
nificant in very large systems. Figure 29 shows a variety of DRAM 
circuits. One-transistor (1T) DRAMs are the most compact but the 
most difficult to sense and control. 

Commercial  DRAM processes offer storage densities limited by the 
metal  pitch. The storage node is buried near the orthogonal inter- 
section of a wordline and bitline. An 8)~ metal pitch would give a 
64~ 2 cell area, comparable to reported values. DRAMs are high en- 
ergy because reads are destructive: every time a cell is read it has to 
be rewritten, and writing requires swinging the bitlines to at least a 
threshold drop below Vaa. This is much higher energy than SRAM, 
which only has to swing the bitlines 100mV or so. 

SRAM 

Figure 30 shows a variety of SRAM circuits. Commercial SRAMs are 
normally implemented using a high resistance poly pullup, and can 
achieve densities only a factor of 4 worse than 1T DRAM. The 6T 
SRAM is lower power because it has a CMOS pullup which shuts off. 
SRAMs can be very low energy because reads and writes only require 
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Figure 30: static memory cells 

small changes in bitline voltage. This small difference can be ampli- 
fied by a cross-coupled inverter sense amplifier without disturbing the 
bitlines. 

FLASH 

FLASH EPROM memory is as dense or denser than 1T DRAM be- 
cause the data  is stored on a floating gate at the intersection of the 
word and bitline, and there is no need for buried storage cells. FLASH 
can be used to store analog or digital values. Single transistor FLASH 
is normally read at reduced voltage and written at elevated voltage, 
so read times are limited by the reduced voltage swings, and writes 
take longer and consume more power than other types of memory. 

A pair of FLASH cells can be used to form a differential pair to reduce 
read energy and read times. A disadvantage of FLASH is the high 
write energy (20pJ/bit)  and long write times (10#sec). Write energy 
can be reduced in analog applications by only making incremental 
changes. 

Decoders 

Decoders form an important  part of any memory system. Much of 
the power consumed in accessing memory is consumed in the decoder. 
Decoders are usually implemented in several stages. Decoding before 
the wordline is called "x-decoding". Decoding after the bitline is 
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called "y-decoding'.  X-decoding is often broken into 3 stages: pre- 
decode, decode, and postdecode. Predecoders determine which of a 
potentially hierarchical set of memory blocks contains the data, and 
recode address bits to reduce the fanout to the wordline decoders of 
a single block. One or more wordline decoders will respond to an ad- 
dress; the postdecoder selects a single wordline by selectively enabling 
its power supply. 

During a read operation, an entire row of data is read out of the 
memory block. The desired piece of the row is then multiplexed 
onto the data  bus through the y-decoder. SRAMs can share sense 
amps among multiple bits; DRAMs cannot, since DRAM reads are 
destructive. 

During a write operation, a row of data  is written to the memory 
block. Again, SRAMs can perform partial writes by only biasing the 
bitlines of active bits. DRAMs must write the entire row, since a cell 
is corrupted as soon as its access transistor is turned on. 

X-decoders can be implemented using a tree multiplexer. This struc- 
ture is more compact but slower than a gate decoder. If the memory 
is pipelined, the decoder latency can be hidden. 

If memory access is predominantly sequential, decoder energy can 
be reduced substantially by bit-reversing the address presented to a 
block. In sequential access, the least significant bit toggles at the 
highest frequency. If adjacent addresses are stored in adjacent words 
in the memory block, the lsb must gate 2 Iv/2 transistors, where N is 
the number of bits in the block address. If the address is bit-reversed, 
then the lsb only toggles 1 transistor, and the msb toggles 2 N/2 tran- 
sistors, but only once every 2 N/2 sequential accesses. So, conventional 

1 N/4  + + 2  N-2i+l transistors every cy- addressing toggles 2 N/2 + ~2 ... 
cle, whereas bit-reversed addressing toggles 1/1 + 2/2 + 4/4 + ... For 
N -- 5, conventional addressing toggles 21 transistors per cycle; bit- 
reversed addressing toggles 5. Bit reversal can be combined with gray 
coding to reduce decoder energy by another factor of 2, but the added 
complexity of the gray coder may more than offset the incremental 
reduction in energy. 

Memory access energy can be reduced further using low voltage dif- 
ferential signals for long lines, especially address and data  buses at 
higher levels of the hierarchy. In a large memory subsystem, the power 
dissipated in a single 100MHz 10cm wire swinging 5 volts is 25mW. 
The same wire swinging 50mV around 0.25V dissipates 12.5/zW. 

Wordline drivers are difficult to pitchmatch to DRAM. The layout be- 
comes very inefficient when the cell pitch is less than 15~. In DRAMs, 
decoders are often placed on both sides of the memory array and the 
wordlines interleaved to meet the pitch. Wordline series resistance 
can be significantly reduced by strapping the poly with metal2. It 
can be further cut in half by placing the decoder in the middle of the 
memory array and driving the wordlines in both directions. 
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The number of transistors in a gate decoder is about 2 N l o g 2 N  for the 
gates and 2 N  for the wordline drivers, where N is the number of rows 
in a block. The number of transistors in a tree decoder is 2 N -  2 for 
the tree and also 2N  for the wordline drivers. Wires dominate  decoder 
area since there are N horizontal wires for the wordlines and 21og2N 
vertical wires for the address lines in a tree decoder, and Nlog2N 
horizontal wires for wordlines in a gate decoder. 
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Figure 31" differential sense amplifier 

Figure 31 shows a high performance differential dense amplifier re- 
ported in [DLHP88], and recommended for use with 1T DRAMs.  
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Figure 33" single ended sense amplifier 

memory array 

4 
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This sense amp has the nice property that the crosscoupled inverters 
automatically perform a refresh write after read. Figure 32 shows a 
current mirror sense amplifier similar to one reported in [AOA+90]. 
Figure 33 shows a single ended sense amp which can be used with 
ROMs, 3T DRAMs, and single-ended SRAMs. 

Pipelined memory 

Memory can be pipelined to increase throughput and reduce storage 
energy. The wordline driver power supplies can be clocked, as can the 
sense amps, leaving an entire cycle to equalize the bitlines, clock the 
wordlines, and spin up the sense amps. 

Caches 

For inner product architectures, memory accesses are predictable and 
sequential. The memory can be interleaved by fetching a number of 
words in parallel from the block into a cache and then accessing those 
words from the cache. N-way interleaving permits a single memory 
access to take N cycles. A k-port memory can be implemented with 
k caches and N-way interleaving as long as the memory access time 
is less than N/k cycles. 

11. Power supply sizing 

Power supplies need to be sized to avoid excessive resistive drops along 
the rails and to stay within metal migration limits. 

The metal migration limit is a limit on the average current which can 
flow through a wire without dislodging the metal atoms and eventu- 
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ally breaking the wire. The metal migration limit for metal in a 2.0/z 
process is about 0.7mA//z. wmin, the minimum width of the supply 
rail, is given by 

Ion 

where Ion is the current through an ON device in milliamps, ld is 
the logic depth in the design, a is the activity, and Jm~= is the metal  
migrat ion limit in mill iamps/micron. For example, given a multiplier 
in 2.0# CMOS, Ion - lmA, l d -  10, a -  0.4, and Jm:= - 0.7mA, 
so wmin = 0.057/z per gate. Then a 4 micron wide power line could 
support  70 gates. 

There is also a resistive drop limit. To keep the voltage drop on a 
power bus under 100mV at 5V while a single 6:2 device is switching, 
we need to keep 0.1/rs  > 4.9/ra, where rs is the resistance in the 
supply and rd is the resistance of the device. For example, if ra - 
3000f~, then rs = 61.2f~. Metal resistance is about 40mf~/E], so a 
61.2f~ line would be 1530[~. 

Older designs tend to place wide supply buses at either side of the 
da tapath .  If the supply rails are run parallel to the dataflow then the 
peak current per rail will be less than if the rails are run perpendicular 
to the dataflow. A newer approach is to run the rails horizontally in 
metal  l, strapping them vertically in metal2 to form a power mesh. 
This works better because the resistive drop is proportional to the 
square of the wirelength, since the width depends on the number of 
active devices as well as the length of the wire. 

For example, if we have 1280 sense amps, 320 per block, each drawing 
500/zA. That ' s  about 10Kf~ per sense amp (5V/0.0005A = 10K~). 
But we have 320 of these in parallel, so ra = 10000/320 = 31.25~. 
Then we need rs = 0.6378f~. At 40 mf~/o  that ' s  0.6378/0.040 = 
15.90. If we have a single bus 4000)` long it has to be 252)` wide. If 
we can feed the bus from both ends, it only has to be 1/4 as wide 
(twice the resistance in each half and half the length) or 63)`. If we 
place a metal2 strap in the middle, the bus only needs to be 16)` wide. 
If we place one every 1000)`, the bus only needs to be 4), wide. 

In general, the strapping distance ls required for a bus of width w is 
given by 

where R is individual device resistance in i'~, p is the cell pitch in )`, 
n is the number of active devices in a cell, v = dV/(Vaa - dV)  is the 
allowed voltage degradation, and r is the resistivity of the supply rail 
in f~/D. For the sense amp example, 

l, - 2v / (10000  • 500/40)  • 0 . 1 / ( 5 -  0.1) • 4 / 0 . 0 4 0 -  1010  
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Since the dataflow is vertical, the required current can be supplied 
from adjacent rails in the mesh through the vertical straps. 

For metal migration, we have 20 devices each drawing 500k~A between 
straps for 7ns out of 44ns or 16% of the time. Then the average current 
is 1.6mA, requiring 1.6/0.7 - 2.28 microns or 3.8.~ of metal. In this 
case, the metal migration limit also permits minimum width rails. 

3 A r i t h m e t i c  e l e m e n t s  

Floating point is becoming widespread because it makes life easy for the 
end user. However, the area, performance, and energy penalty for using 
IEEE standard implementations is substantial. Taking advantage of just 
enough precision is key to compact, low energy implementations of digital 
signal processing. In the discussions of this section, we assume normalized 
2's complement fixed point arithmetic. 

;~ z ~ 0 "  ~ I $ 2 " ' ' Z B - 1  ---- 

B - 1  

Z zi2 i 
i--O 

where B is the number of bits to represent the binary number m, zi is either 
1 or 0 for i > 0, and m0 is the sign bit with a value of either - 1  or 0. 

3 . 1  A d d e r s  

In an adder design, overflow is the first problem we have to consider. Let's 
look at the following examples. (B - 4 bits) 

Example 1: 

Let a -  -0.5 - 1.100 and b - 0.75 - 0.110. A binary addition 
of 1.100 and 0.110 produces 10.010. If we discard the highest 
bit (1 in this case), we obtain 0.010 - 0.25, which is the correct 
answer. 

Example 2: 

Let a -  0.5 - 0.100 and b - 0.75 - 0.110. A binary addition 
of 0.100 and 0.110 produces 01.010. If we discard the highest bit 
again, we have 1.010 -- -0.75, which is obviously a wrong answer. 
This is called an overflow problem in binary addition because 
the answer of a+b  is larger than 1 which cannot be represented 
in the number system although both a and b are in the number 
system. A conventional way to avoid this problem is to scale 
the inputs to the binary adder by a factor of 0.5 so that the 
result is guaranteed to be in the number system. This can be 
called input-scaling because the inputs to the binary adder are 
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scaled. A problem associated with such an input scaling scheme 
is the lose of precision. If several additions are performed in a 
row, the final result may suffer from underflow. The following 
example shows an extreme case. 

Example 3: 

Let a - 0.001 and b -  0.001. If the input scaling scheme 
were used in this addition, 0.000 and 0.000 would be the inputs 
to the 4-bit adder and the result would be 0.000. A non-zero 
result would become a zero. 

A better  way to handle the overflow problem is to use output  scaling. 
In the previous example, a + b  without input scaling should be 00.010. Scal- 
ing the output  by a factor of 0.5 generates 0.001, which is a better result. 
Application of this scheme to Example 2 provides the correct result. How- 
ever, this scheme seems to give a wrong answer for the case in Example 
1. The reason is that  the sign bit is treated in the same way as the other 
bits al though the symbol "1" at the sign bit represents a value - 1  while 
the symbol "1" at other locations represents a value 1. Therefore, with a 
special design of the sign bit adder, this problem can be solved. 

a b cin cout sum 

0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

Table 3: Truth table for a regular full adder 

The t ru th  table for a regular full adder is shown in Table 3. From this 
t ru th  table, the logic relationship of inputs and outputs can be derived as 
follows: 

sum -- parity-checking(a,b,cin) 

cout - majority-voting(a,b,cin) 

where parity-checking(a,b,cin) can be implemented using (a xor b xor cin) 
and major i ty-vot ing(a ,b ,c in)can be implemented using ((a and b) or (b and 
cin) or (a and cin)). For the sign bit in output  scaling, the t ru th  table is as 
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follows, keeping in mind that a symbol "1" means a value - 1  for inputs a 
and b, a value - 2  for output cout, and a value 1 for input cin and output 
sum. 

a b cin cout sum 

0 0 0 0 0 
0 0 1 0 1 
0 1 0 1 1 
0 1 1 0 0 
1 0 0 1 1 
1 0 1 0 0 
1 1 0 1 0 
1 1 1 1 1 

Table 4: Truth table for sign bit full adder 

From this t ruth table, the logic relationship of inputs and outputs can 
be derived as follows" 

sum - parity-checking(a,b,cin) 

cout - majority-voting(a,b,cin) 

The logic for sum is the same as that  in a regular full adder. The only 
difference is in the logic for cout where one more inverter is needed to 
generate cin for the majority-voting circuit. Figure 34 shows a regular full 
adder and a sign-bit full adder for output scaling. 

Figure 35 shows bit-parallel implementations of input scaling and output 
scaling schemes. For input scaling, a s - i  and b s - i  are discarded before a 
and b go to the B-bit adder, a0 and b0 are sign-extended to the left-most 
full adder. The sum bit of the left-most full adder is the sign bit of the result 
and the cout bit is discarded. For output scaling, no bits are discarded at 
the input and there are no sign-extentions either. The sum bit of the right- 
most full adder is discarded and the cout bit of the left-most full adder, 
which has one more inverter than the regular full adder, is the sign bit of 
the result. 

Figure 36 shows bit-serial implementations of input scaling and output 
scaling schemes. For input scaling, the control signal con1 determines if a 
"0" or the previous carry-out should be the input to the carry-in of the full 
adder. At the beginning cycle of each addition, con1 allows "0" to pass. 
During the rest of addition cycles, con1 allows the previous carry-out to 
pass. The control signal con2 provides a qualified r  signal to the input 
registers to prevent the LSBs of the input from getting into the full adder 
so that  sign-extention is automatically performed for the previous addition. 
A total of B cycles are needed for each addition and the output result is 
obtained with a two-cycle latency. 
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For output scaling, an extra XOR gate is needed as a conditional inverter 
to generate a complement signal for the majority-voting circuit when the 
sign bits arrive. The control signal con1 clocks a "0" into the register one 
cycle before the LSBs of the inputs arrive. The conl signal also controls the 
conditional inverter (XOR gate) because, in a pipelined operation, the cycle 
before new data arrive is the one with sign-bits of the previous input data. 
The control signal con2 determines if the output of parity-checking or the 
output of majority-voting should be passed. At the time new data arrive, 
the carry-out of the previous addition should pass and during the rest of the 
cycles, sum should pass. While the con2 signal allows the previous carry-out 
to pass, it actually prevents the LSB of the new result from passing to the 
output. This is equivalent to discarding the LSB of the output, which is part 
of the output scaling scheme. Same as the input scaling implementation, 
it takes B cycles to perform a B-bit addition and the output is obtained 
with a two-cycle latency. 

3.2 Biased Redundant Binary (4"2) Arithmetic 

Carry propagation is an expensive operation in digital arithmetic. Several 
families of arithmetic have been developed to reduce the impact of carry 
propagation. Signed digit [Avi61] and various redundant binary methods 
[HNN+87] have been proposed. Biased redundant binary (4:2) arithmetic 
[SW78] interfaces cleanly to standard two's complement data format, imple- 
ments an efficient and compact accumulator [LB87, LB, Li88, SH88, SH89, 
San89], and has optimal logic depth [BP91b]. 

Again, a normalized conventional 2's complement binary number is rep- 
resented as follows: 

N - 1  

X2c -- E Z2c'n2-n 
n~O 

where z2c,,~ E {0, 1}, for n -- 1, 2, 3 , . . . ,  N - 1, and z2c,0 C {0 , -1} .  A 
normalized signed-digit (SD) number is represented as follows. 

N-1 
XSD -- E Zsd,n2-n 

n = 0  

where Zsd,,~ E {--1, 0, 1}, for n -- 0, 1, 2, 3 , . . . ,  N -  1, Because each digit 
z~a,,~ in an SD number may take three different values {-1, 0, 1}, two bits 
are needed to represent each digit. However, only three states of the two 
bits are allowed. A way to code the two bits for a digit is as follows: 

Zsd+,n Zsd-,n T, sd,n 

1 0 1 
0 0 0 
0 1 - 1  
1 1 not allowed 
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Because of this coding scheme, T, sd+, n and m,d-,~ are usually referred to as 
the positive bit and the negative bit of the n *h digit respectively. Conversion 
of a 2's complement number to an SD number, i.e., introducing redundancy, 
can be a simple assignment operation as follows" 

Xsd+, 0 ~ O, Xad_,O ~ ~2c,0~ 

msd+,n -- m2c,n, msd-,,~ -- 0, for n -  1, 2, 3 , . . . ,  N -  1. 

Conversion of an SD number to a 2's complement number, i.e., eliminating 
redundancy, is a binary subtraction operation as follows: 

N - 1  N - 1  
m 2-72. X2e Z msd+,n 2-n  -- Z msd-,n 

n = 0  n = 0  

Biased redundant  binary (BRB) arithmetic is another type of redundant  
ar i thmetic  to eliminate carry propagation. A normalized BRB number can 
be represented as follows" 

N - 1  

X B R B  -- Z ~ 'brb 'n2-n  
n -O 

w h e r e  ~brb,n C { 0 ,  1, 2}, for n -- 1, 2, 3 , . . . ,  N -  1, and z~r~,0 C { 0 , - 1 , - 2 } .  
Each digit Zb,.b,,~ in a BRB number may also take three values but the 
center value is not 0 anymore. It is "biased" relative to the SD number 
representation, mb~b,O is the most significant digit which has a bias "-1",  
and other digits, Zb~b,,~, have a bias "1". To represent a digit in a BRB 
number,  two bits are needed too. A coding table is as follows: 

T, brbl,n 93brb2,n W, brb,n 

1 1 2 
1 0 1 
0 1 1 
0 0 0 

~brbl,O ~brb2,0 ~brb,O 

1 1 - 2  
1 0 - 1  
0 1 - 1  
0 0 0 

A 2's complement number can be condisered as a half of a BRB number 
with the other half being zero, i.e., 

~brbl ,n  --  ~2c,n ~gbrb2,n -- O, 

for n -- 0, 1, 2 , . . . ,  N -  1. Conversion of a BRB number to a 2's complement 
number is an addition operation as follows: 

N - 1  N - 1  

+ 

n--O n---O 

Although both BRB and SD number formats have the same property of 
eliminating carry propagation, they have different features. One feature of 
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the SD number format is that  the representation of zero is unique although 
the digit pat tern of any nonzero number is not unique. Since the BRB 
number format does not have this feature, the SD number format is better 
than the BRB number format in operations such as comparison of two 
numbers or memory address decoding. On the other hand, the B RB number 
format has a feature that  the SD number format does not have. The feature 
is that  two 2's complement numbers can form one BRB number without 
needing any operations. This feature makes the B RB number format a 
more desirable choice than the SD number format for operations such as 
partial product summation in a multiplier. It also makes BRB adder design 
simpler than SD adder design. 

Since the BRB and the SD number formats have different advantages 
and disadvantages for different operations, it is desirable to use them for 
different subsystems in a signal processing system. To have two different 
number representations in a system, we have to be able to convert one 
number representation to the other and vice versa. One way to do the 
BRB-SD conversion is through 2's complement format since, as mentioned 
above, both BRB and SD number formats can be converted to and from 2% 
complement format. But conversion of either BRB or SD number format to 
2's complement format requires carry propagation addition or subtraction. 
A parallel algorithm for converting BRB numbers to and from SD numbers 
is very desirable. 

The difference between a BRB digit and an SD digit is that  the BRB 
digit is biased with 1 o r - 1  while the SD digit is unbiased. Because they 
both can have three consecutive values, we may convert one representation 
to the other by simply subtracting or adding the biases from or to the digits. 
To convert a BRB number XBRB tO an SD number, we first eliminate the 
biases in the digits of XBRB as follows: 

N - 1  

: + 1 )2  0 + - 1)2-  

n : l  

N - 1  N - 1  

: W~brb,020-[  - ~ - ~ W ~ b r b , n 2 - n - 4 - 1  - ~ 2  - n  

n = l  n = l  

= X B R B  -3 t- 2 - ( N - l )  

This shows that  the process of subtracting the biases actually generates 
an SD number that  is the orginal BRB number plus 2-(N-1).  In order to 
get the equivalent SD number of the same algebraic value, a subtraction of 
2 - ( N - l )  from X'SD is needed. The logic for subtracting the bias 1 in the 
n th digit (n > 0) is as follows: 

! 
T, s d + ,  n --" T~brbl ,nT,  b rb2 ,n  

! 
T, s d _ ,  n --" T, b r b l , n  + T, b rb2 ,n  
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This is derived from the following truth table: 

t T t T 'b rb l ,n  ~,brb2,n ~" s d + , n  s d - , n  

1 1 1 0 
1 0 0 0 
0 1 0 0 
0 0 0 1 

The logic for subtracting the bias -1 from the most significant digit is as 
follows: 

I 
Xsd-t-,O - -  T'brbl,O 21- ~brb2 ,0  

! 
T, s d _ ,  0 - -  T, brbl,OT, brb2,0 

This is exactly the same as that  for subtracting the bias 1 except renaming 
the output  bits. Logic circuits for subtracting the biases from a two bit 
BRB digit are shown in Figure 37. 

X brb 1,n X brb2,n X brb 1,0 X brb2,0 

X ~ s d+,n X ~ s d-,n X s d+,O X ~ s d-,O 

Figure 37: Logic circuits for subtracting biases for BRB to SD conversion 

After subtracting the biases from the digits of XBRB, an SD number 
X~SD is obtained. Subtraction of 2 - (N- l )  from X'SD is needed to obtain 
XSD. This can be performed by the logic circuit shown in Figure 38. 

From Figure 37 and Figure 38, we can see that  conversion of XBRB to 
XSD can be done in parallel because there is no serial signal propagation 
in either elimination of biases or subtraction of 2-(N-1).  
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Figure 38" Logic circuit for subtracting 2 - (N- l )  from X'SD 

To convert an SD number XSD to a BRB number, we need to do the 
reverse, i.e., adding the biases first as follows: 

N-1 
X~RB = (a,d,0-- 1)20 + Z ( a ' a , n  + 1)2 -n 

rt--1 

N - I  N - I  
: ~,~.02 ~ + ~ ~,~. .2 -~  - i + ~ 2 -~  

n=l n=l 

= X S D  - -  2 - ( N - I )  

This shows that  the process of adding the biases actually generates a 
BRB number that  is the orginal SD number minus 2 - (N- l ) .  In order to get 
the equivalent BRB number of the same algebraic value, 2 -(~r-1) has to be 
added to X~R B. The logic for adding the bias 1 to the n t h  digit (n > 0) is 
as follows" 

! 
T, b r b l , n  - -  T, s d + ,  n 

I 
T'brb2 ,n  - -  - ~ s d - , n  

This is derived from the following truth table: 

! ! 
~ s d + , n  ~ a d - , n  ~ ' b r b l , n  X b r b 2 , n  

1 0 1 1 
0 0 0 1 
0 1 0 0 

1 1 any thing 
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The logic for adding the bias -1 to the most significant digit is as follows: 

I m 
~ b r b l , O  - -  ~ s d - F , O  

! 

Zbrb2,0- ~sd-,O 

Again, this is the same logic but inputs are renamed. Logic circuits for 
adding the biases to a two bit SD digit are shown in Figure 39. 

X s d+,n X s d-,n X s d+,0 X s d-,0 

X brb2,n X brb 1,n X brb 1,0 X brb2,0 

Figure 39" Logic circuits for adding biases for SD to BRB conversion 

Only one inverter per digit is needed for adding the biases. Logic in 
Figure 39 is simpler than that  in Figure 37, because (Zsd+,n, Zsd-,n) -- (1, 1) 
is a "never happen" ("don't  care") state. After adding biases to the digits 
of XSD, a BRB number X~R B is obtained. Addition of 2 - (N-I )  to XIBRB 
is needed to obtain XBRB. This can be done by N half adders as shown in 
Figure 40. 

From Figure 39 and Figure 40, we can see that  conversion of XSD to 
XBRB is a parallel process too, because there is no serial signal propagation 
in either adding biases or addition of 2 -(N-z) .  Thus we have shown that  
conversion of a BRB number to or from an SD number is a parallel process. 

Although a BRBA can be implemented using two full adders, we have 
used a "direct logic" implementation [LB87] that  reduces the number of 
xors in series from four to three, increasing the speed by 33% (see Figure 
41). 

3.3 Fast comparator 

Unloaded manchester carry chains make very fast, efficient comparators. 
They are generally much faster than propagating adders because there are 
no sum terms to load down the carry chain (see Figure 42). 

3.4 Multiplier 

Multiplication can be divided into two parts, namely, partial product gen- 
eration (PPG) and partial product summation (PPS). As an example, let 
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Figure 41: BRB adders. Left is a full adder. Its critical path is 2 xors in 
series. Center is a BRB adder using 2 full adders. Its critical path is 4 xors 
in series. Right is a direct logic implementat ion of a BRB adder. Its critical 
path is 3 xors in series. 

i propL 
genL "~E - ~  

prop 

cin 
genL = nand(a, b) 
kill = nor (a, b) 
prop = xor (a, b) 
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Figure 42: Unloaded manchester carry chain. 
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X - -  2~0 �9 2~1~C2~C 3 and Y - y o ' y l y g y 3  be two numbers to be multiplied with 
each other. The following procedure is usually involved in the multiplica- 
tion: 

yv 

Yl 
Yo 

XO 2:1 2:2 Z3 
pn,o pn,o pa,o pn,o pa,1 

pl,o pl,o P1,1 pl,2 pl,n 
Po,o Po,1 Po,2 Po,n 

1 

P3,2 P3,3 
P2,3 

ZO Z1 Z2 Z3 Z4 Z5 Z6 

where p i , o p i , l p i , 2 p i , 3  is called the i th partial product and Z O Z l Z 2 Z 3 Z 4 z s z  6 i s  

the final result. PPG is the process of gerenating the partial product array 
and P PS is the process to add up the partial products for the final result of 
the multiplication. Figure 43 shows how PPG is performed using NAND 
and AND gates. 

11 

x o x I X2 x 3 

P i,o P i, 1 P i,2 P i,3 

(a) 

Yo 

X 0 X 1 X2 X 3 

P 0,0 P 0,1 P o2 19o,3 

(b) 

Figure 43: Partial product generation 

As shown in Figure 43, sign extension in two's complement multiplica- 
tion is normally a high fanout operation, since the msb of the least signif- 
icant partial product must fan out as far as the most significant bit of the 
most significant partial product. This can be circumvented by making use 
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of the fact that 

s s s s  - -  1111+ 

1 + ~  - -  s + 2 ~  

where s is either 0 or 1 and ~ is its logical complement. Then the partial 
product array becomes 

~3 
y~ 

Yt 
Y0 

2:0 Z1 2:2 2:3 

P l , 0  

p0,o P0,t 

P3,0 p3,0 P3,1 
p~,o p2,t p2,2 

Pt , t  pt,~ pt,z 

P0,~ p0,3 
1 

P3,2 P3,3 
P~,a 

Zo Zl Z2 Z3 Z4 Z5 Z6 

Figure 44 shows the logic circuit for PPG without sign extention. 

Y3 

P3.0 

x 0 x ! x 2 x 3 

P3.0 P3,] P3.2 P3.3 

(a) 

X 0 X 1 X 2 X 3 

Pi.o Pi.l  P i2  Pi.3 

(b) 

Yo 

x o x I x 2 x 3 

I I 

Po,o P O,l P 0.2 Po.3 

(c) 

Figure 44: Partial product generation without sign extention 

Modified Booth encoding is a technique to reduce the number of partial 
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Yi-1 W W+I P~ explanation 

0 0 0 0 
0 0 1 X 
0 1 0 X 
0 1 1 2X 
1 0 0 -2X 
1 0 1 -X 

1 1 0 -X 
1 1 1 0 

a string of 0's 
high end of a string of l 's 
a single 1 at yi 
high end of a string of l 's 
low end of a string of l 's 
low end of a string of l 's AND 
high end of a string of l 's 
low end of a string of l 's 
middle of a string of l 's 

Table 5: Truth table of the modified Booth encoder 

products from N to N/2 where N is the number of bits in Y. Table 5 shows 
the t ruth table for designing a modified Booth encoder. 

After partial products are generated, PPS can be considered as simply 
adding up several numbers together. Figure 45 shows the most straight- 
forward way of using carry-propagate adders (CPAs) to perform PPS. In 
practice, this structure is not used because CPAs are too slow. Figure 46 
shows how to use a full adder array to perform P PS. Every stage of full 
adders performs an addition of three numbers and generates two numbers. 
Therefore, except the first stage which takes three partial products as in- 
put, every stage of full adders takes as input only one partial product. 
Thus a total of N - 2 stages of full adders are needed to reduce N partial 
products to two which are then added by a final CPA. Excluding the fi- 
nal CPA which is usually replaced by a carry-lookahead adder (CLA), the 
delay time to reduce N partial products to two in an array multiplier is 
linearly related to the number of partial products. Wallace tree is another 
way to perform PPS as shown in Figure 47. The time to recuce the partial 

iv The base 1.5 is from products from iV to 2 is proportional to logi. 5 y .  
the fact that  Wallace tree has a 3:2 reduction of partial products per stage. 
Signed-digit redundant binary (SDRB) adders have also been used for PPS. 
Figure 48 illustrates an SDRB adder tree for PPS. The B-to-SDRB conver- 
sion box introduces redundancy so that the number of lines at the output 
of the box is twice as many as that at the input of the box. log 2 iV stages 
of SDRB adders are needed to reduce iV SD numbers to one SD number 
which is then converted to regular 2's complement number by a subtractor. 
As mentioned ealier, BRB adders are better than SDRB adders for PPS 
because two 2's complement numbers can be put together to form a BRB 
number. Therefore, there is no need to have any conversion box at the 
top to introduce redundancy. Figure 49 shows how to construct a BRB 
adder tree for PPS. At the top, four 2's complement numbers from PPG 
are taken as two BRB numbers, log 2 ~ stages of BRB adders are needed 

N to reduce y BRB numbers (or equivalently iV 2's complement numbers) 
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to one BRB number (or equivalently two 2's complement numbers).  The 
final stage of converting the BRB number to a 2's complement number is 
a regular adder. 

Partial Products 

/ A \ 

CPA 

I l l  
CPA CPA CPA 

CPA CPA 

CPA 

OUT 

Figure 45" CPA tree for P PS 

BRB adder also provide a good solution to a problem in multiplier accu- 
mulator.  Figure 50 shows a conventional multiplier accumulator.  Ususally, 
the multiplier is pipelined to increase the throughput .  However, such an 
effort would be useless if the CPA in the accumulation loop is much slower 
than a single pipeline stage in the multiplier. A natural  question is whether 
the CPA in the accumulation loop can also be pipelined. The answer is un- 
fortunately no because the extra cycles in the accumulator would delay the 
result to be accumulated to the new input and the final result would be 
wrong. Although this problem can be solved by interleaving the input, a 
better solution is to use a BRB adder as an accumulator as shown in Fig- 
ure 51. The multiplier in this figure generates as output  a BRB number. 
One more BRB adder in the middle performs accumulation in BRB format. 
Because the B RB accumulator has the same delay time as a pipeline stage 
in the multiplier, the throughput  bottleneck is eliminated. The output  of 
the BRB accumulator is then converted to a 2's complement number using 
a CPA which can be pipelined without causing timing problems. 
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Figure  46: Full adder  a r ray  for PPS  
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Figure 47: Wallace tree for PPS 
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Figure 48: Signed-digit redundant binary adder tree for PPS 
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Figure 49" Biased redundant binary adder tree for PPS 
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4 Mapping algorithms to architectures 

An algorithm is a set of tasks to be applied to data in a specified order to 
transform inputs and internal state to desired outputs. An architecture is a 
set of resources and interconnections. Mapping algorithms to architectures 
involves assigning tasks to resources. Optimizing an architecture to execute 
a class of algorithms involves an iterative process in which both the algo- 
r i thm and the architecture may be modified to improve overall efficiency. 
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Figure 52: DARPA study application capacity and performance require- 
ments. The biological trendline lies at 10 connections per second per con- 
nection (CPS/C);  for signal processors, at 10 ~ CPS/C.  

In many types of systems, a first order concern is the relative area ded- 
icated to program store, data store, and processor resources. In digital 
neural net design, for example, this can be expressed as the number of con- 
nections per processor (CPP). The DARPA neural net study [Wei88] lists 
a variety of applications and their requirements in connections (C) and 
connections per second (CPS). These are reproduced in Figure 52. The 
opt imum CPP is related to the C and CPS of an application by CPP -- 
( C P S / C ) / ( C P S / P ) ,  where CPS/P,  the number of connections per second 
per processor, is determined mainly by the technology. An optimal archi- 
tecture is therefore a function of both the application and the technology. 

This equation gives the optimal architecture for a family of applications 
which lie along a trendline of constant CPS/C.  CPS/C is equivalent to pat- 
terns per second whenever all the weights in the network must be accessed 
on every pattern presentation. 

The biologicalnets in Figure 52 fall along the trendline of 10 CPS/C.  
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Conventional computers lie closer to 1 CPS/C. Neurochips implemented so 
far lie between 104 CPS/C and 107 CPS/C. 

A single digital VLSI multiplier can support l0 s CPS. Therefore, a 
biologically motivated architecture capable of 10 CPS/C could have 107 
connections per processor (CPP). An accelerated learning engine capable 
of 1000 CPS/C could have 105 CPP. An architecture matched to the signal 
processing applications in the DAPRA report (106 CPS/C) could have 100 
connections per processor. 

So far, all the neurochips (analog or digital) which have been imple- 
mented are better suited to signal processing applications than to the other 
DARPA applications because they feature a relatively small synaptic store 
for each processor. The Adaptive Solutions CNAPS [Ham90], for example, 
has 64 processors and 4K 8-bit weights per processor. Each processor can 
execute 25 million CPS, resulting in about 104 CPS/C. 

Processors for large networks will need to be optimized for minimum 
decision energy, not minimum silicon area, since power dissipation will be a 
dominant constraint. Processor area optimization is much more important 
in signal processing networks, where the memory/processor area ratio is 
closer to 1:10. 

0.5/z technology supports about 106 connections/cm 2, so we might ex- 
pect about 1 processor for every 10cm 2 at 10 CPS/C, or one fractional 
processor capable of 107 CPS for every cm 2. 0.2~t technology will support 
about 107 connections/cm 2, and therefore 1 processor/cm 2 at 10 CPS/C. 

who  b i t s  t y p e  tr C C P S  C P S / C  W J 

[ C T K  + 89] 16M D R A M  60ns  2M 17M 8 4 2 5 m W  2 5 n J  
c o m m e r c i a l 9 1  4 M  D R A M  40ns  512K 2 5 M  49 - - 

[ K B D  + 90] 16M D R A M  10ns 2M t 0 0 M  50 
M 5 M 4 4 C 2 5 6  1M D R A M  60ns  128K 8 M  63 3 0 0 m W  3 8 n J  
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[ R a m 9 2 ]  4M R D R A M  2ns 512K i00M 953 

[ H K T +  90] 4 M  S R A M  23ns  512K 4 3 M  84 3 5 0 m W  8 n J  

[ A O A  + 90] 4 M  S R A M  15ns 512K 6 7 M  131 6 5 0 r o W  1 0 n J  

[SIY + 90] 4M S R A M  9 n s  512K l l l M  217 9 7 0 r o W  9 n J  
P a r a d i g m 9 1  1M S R A M  17ns 128K 59M 449 - - 

Table 6" Maximum pattern presentation rates at full capacity for various 
memory chips. CPS/C is connections per second (CPS) per connection (C) 
and is equal to the maximum pattern presentation rate if the chip is loaded 
to its capacity. In each case, t~ is the fastest cycle time reported. DRAM 
cycle under 60ns and SRAM under 10ns usually implies page mode access. 

The trendline along which an architecture can fall depends heavily on 
the available memory bandwidth, and whether a single weight fetch can 
be applied to multiple patterns. If weights are stored in off-chip memory, 
then the CPS/C of the system is determined by the CPS/C of a single 
memory chip and the depth of the on-chip pattern cache. A single 16Mbit 
DRAM chip with 200ns cycle time organized as 4Mx4 can supply 2.5MCPS 



52 JAMES B. BURR ET AL. 

and has a capacity of 2MC, assuming 8-bit weights. This is only 1.25 
CPS/C.  10CPS/C would require 25ns access at 16Mbits or a depth 8 on- 
chip pattern cache. Table 6 shows a variety of memory chips which can 
provide in excess of 10 CPS/C.  However, if we wish to build a neural net 
capable of accelerated learning at 100• 10 CPS/C,  Table 6 suggests that 
conventional memory chips do not yet have the desired bandwidth without 
a large (1K-pattern) on-chip pattern cache. 

Rambus Inc. [Ram92] has used a DRAM architecture with greatly en- 
hanced throughput.  They organize a DRAM core so 1024 bits can be 
latched at a time into an on-chip SRAM cache. The cache contents can be 
read or written over a byte-wide interface in packets up to 128 bytes long. 
Data is transferred on both edges of a 250MHz clock for a throughput of 
500MBytes per second. The SRAM cache is double buffered so the next 
line in the DRAM can be read while the current line is being transferred. 

The Rambus architecture is ideally suited to block oriented data trans- 
fers and applications where the data accesses are to successive words, such 
as video scanline operations or line replacement in microprocessor caches. 
It is not well suited to random access when each word is in a separate block. 

In fully connected networks, the Rambus architecture can efficiently 
support Ewij~j.  Note that if wij is efficient, wji is not. This can be a 
significant problem in back propagation. It can be solved by keeping two 
copies of the weights, one for feedforward and one for feedback computa- 
tions, and exchanging their roles following each weight update. 

In sparsely connected nets, the throughput of the Rambus architecture 
depends strongly on how the weights are packed in memory. In change- 
driven computation, the throughput depends strongly on the patterns of 
activity. 

An alternative to the Rambus approach which permits high throughput 
and random access is pipelining. With pipelined memory, each memory 
transaction may take several cycles to complete, but a new transaction can 
be initiated on each cycle. Pipelined memory is well suited to applications 
which require high throughput random access, but tolerate high latency. 

Bandwidth to weight memory can be reduced by storing multiple pat- 
terns on-chip and applying each incoming weight to all the cached patterns 
before fetching the next weight. This can be done during feedforward com- 
putation provided the extra latency can be tolerated. To maintain a uni- 
form data rate in patterns and weights, reducing weight bandwidth by a 
factor of k while keeping the pattern presentation rate constant requires a 
2k-element pattern cache and 2k times the latency from pattern input to 
pattern output.  Weight memory bandwidth can be reduced during learn- 
ing provided k weight changes can be accumulated between weight updates. 
The impact of batch updating is application dependent. 

Although partitioning the system into separate processor and memory 
chips makes sense for traditional architectures, it increases the memory 
access energy since the memory is removed from the processor. During 
training, all the weights tend to be modified incrementally all the time, so 
caches do not reduce memory access energy. In this case memory access en- 
ergy can be substantially reduced by distributing processors to the memory. 
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The opt imum architecture balances the power dissipated accessing memory 
with the power dissipated communicating between processors. 

A disadvantage of combining processors and memory on the same chip 
is that  logic processes are not optimized for the smallest memory cell, and 
memory processes are not optimized for the fastest logic circuits. 

In the foregoing discussion, the word "processor" refers to an entity 
capable of computing a connection. The issue of SIMD vs MIMD is not ad- 
dressed. For example, the SPERT architecture [Waw92] has a single scalar 
processor which controls a datapath  that  has 8 multiply-accumulators. In 
terms of the previous discussion, this is an 8-processor system, since there 
are 8 entities capable of computing connections. Its advantage is that  it 
can amortize the energy and resources of one scalar control processor over 
8 datapath  processors, at some sacrifice in flexibility. 

5 A r c h i t e c t u r a l  w e a p o n s  

The performance of digital VLSI systems can be enhanced using a vari- 
ety of techniques. These are: pipelining, precision, iteration, concurrency, 
regularity, and locality. Of these, precision may be particularly useful in 
signal processing applications, and iteration may become more widespread 
as technology scales down. "Architectural weapons" are design techniques 
which can increase performance, reduce area, or decrease energy. In this 
section we focus on several techniques which are generally useful in perfor- 
mance driven signal processor design. 

5.1  Pipelining 

const V scale V 

devices/area S 2 5 "2 
speed S 2 S 
ops/sec/area 5 '4 S a 
energy/op 1/S 1/S 3 
power/area S 3 1 

Table 7: Energy scaling 

For many problems in signal processing, performance can be maximized 
by maximizing pipelining and parallelism. This is an excellent technique 
for small and medium scale systems with generous power budgets. But as 
systems get very large, the level of parallelism achievable either by pipelin- 
ing or replication will be limited by power considerations. Table 7 suggests 
that  scaled voltage is the way to go for implementing very large systems. 

In highly pipelined systems, performance is maximized by placing pipe 
stages so delay is the same in every stage. This requires good timing analysis 
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and optimization tools. 

As technology scales, the clock rates achievable by highly pipelined 
structures will be difficult to distribute globally. Self-timed iterative cir- 
cuits can save area by performing high speed local computation. 

Signal processing applications are well suited to deep pipelining because 
the latency of an individual unit is not nearly as important as the compu- 
tation and communication throughput of the system. 

If a system is too heavily piped, too much area is taken in latches, and 
the load on the clock is too large, increasing clock skew and reducing the 
net performance gain. 

A system clock based on the propagation delay of a BRBA provides 
a good balance between area and perforamnce. This is typically 1/4 of a 
RISC processor clock period in the same technology. 

Pipelining has been used extensively to improve performance. It can 
also be used to lower power at the same performance, if the supply voltage 
is reduced to maintain constant throughput. 

For a given resource, there is an optimum logic depth which minimizes 
energy at constant throughput. At shallower logic depths, latch energy 
dominates. At greater logic depths, logic energy dominates. We have found 
the opt imum logic depth for a 32x 32 bit multiplier to be just about equal 
to the propagation delay through a BRBA [BP91b]. At this logic depth, 
the area penalty is 37%. We have obtained similar results for both array 
and tree multipliers ranging in size from 4x4 bits to 256x256 bits, and 
various types of adders, including ripple, carry select, and carry lookahead. 

5 . 2  P r e c i s i o n  

Precision can have a significant impact on area, power, and performance. 
The area of a multiplier is proportional to the square of the number of bits. 
A 32 x 32 bit parallel multiplier is 16 times the area of an 8 x 8 bit multiplier. 
At 8 or fewer bits, a multiplier is just an adder. A Booth encoder can cut 
the number of partial products in half and a BRBA can accept up to 4 
inputs. 

Precision should be leveraged where it is available in the system. For 
example, an N x N bit multiply generates a 2N bit result. A Hebbian style 
learning algorithm could compute a weight adjustment to higher precision 
than is available and choose a weight value probabilistically. 

Low precision arithmetic has its own special problems, primarily hav- 
ing to do with keeping intermediate results within the available dynamic 
range, and minimizing systematic errors. Range control techniques include 
using overflow and underflow detection together with saturation logic. Er- 
ror statistics will be affected by the type of quantization method chosen. 
These include truncation, rounding, and jamming. Jamming places a one 
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in the lsb of the result if any of the lower order bits being discarded are 
ones. This approach has the advantage that it is zero mean [HH91]. 

5.3 Iteration 

Iteration involves using an area-efficient arithmetic element and a local high 
speed clock to compute a single result in several clock cycles. Iteration 
reduces logic area by time multiplexing resources at a higher frequency 
than can be managed globally. 

The conventional way to achieve high computational throughput is to 
implement a parallel arithmetic element clocked at the system clock rate. 
An alternate approach is to generate a local clock which is at least some 
multiple of the system clock rate, and then to implement only a fraction of 
the arithmetic element. 

The basic idea behind iteration can be illustrated by the following ex- 
ample. Suppose we want to build a multiplier which can accept two inputs 
and output a product on every clock cycle. Using conventional techniques, 
we would have to use N 2 full adders and clock the data through the mul- 
tiplier at the system clock rate. Suppose, however, that we could generate 
a local clock which was at least twice the frequency of the system clock. 
We could then implement the multiplier in half the area using N2/2 fullad- 
ders. Iterative structures trade space for time. Iteration will become more 
widespread as technology scales down and local clock rates scale up. 

5.4 Concurrency 

Concurrency is a widely used technique for increasing performance through 
parallelism. The degree of parallelism will increasingly be limited more by 
power density than by area. Although there is a great deal of concurrency 
at the system level, the concurrency of a single chip depends on the CPS/C 
ratio of the application. In signal processing applications, the degree of 
parallelism in a single chip will increasingly be limited by power density. 

5.5 Regularity  

Regularity in an architecture or algorithm permits a greater level of system 
complexity to be expressed with less design effort. Many signal processing 
allgorithms are composed of large numbers of similar elements, which should 
translate directly to VLSI implementation. 

5.6 Locality 

Local connections are cheaper than global ones. The energy required to 
transport information in CMOS VLSI is proportional to the distance the 
information travels. The available communication bandwidth is inversely 
proportional to wirelength, since the total available wirelength per unit area 
in a given technology is constant. 

The energy required to switch a node is CV 2, where C is the capacitance 
of the node and V is the change in voltage. C is proportional to the area 
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of the node, which for fixed width wires, is proportional to the length of a 
node. 

It is very important to maximize locality to minimize communication 
energy. Wires cost about lpF/cm,  whether they are on a 0.2/Z chip or a 24 
inch circuit board. This translates directly to 25p:I/cm if signals switch 5V, 
and 10f:l/cm if they switch 100mV. In either case, the shorter the wires, 
the better, since communication energy is proportional to wirelength and 
communication bandwidth is inversely proportional to wirelength. Mas- 
sively parallel architectures need to be very careful about the number of 
long range connections. 

6 Area, power, and performance es t imat ion 

We have developed a simple area, performance, and power estimation tech- 
nique which we use to construct spreadsheets in the early stages of archi- 
tectural exploration, feasibility analysis, and optimization of a new design. 
Area is computed by estimating the number of transistors required. Per- 
formance is estimated by building an RC timing model of the critical paths 
into the spreadsheet. Power is estimated using CV2f, where f is obtained 
from the performance section of the spreadsheet. 

Area, performance, and power are parametrized by technology. We have 
a "technology section" of the spreadsheet where we build in technology 
scaling rules to compute transistor transconductance and device parasitics. 

6 . 1  A r e a  e s t i m a t i o n  

We use a simple technique to estimate area of chips before we build them. 
We identify the major resources on the chip, and estimate the number of 
transistors for each resource. We then multiply the number of transistors 
in each case by an area-per-transistor which depends on how regular and 
compact we think we can make the layout. 

1-transistor DRAM and ROM are about 100,~,2/transistor. 3T DRAM 
and 6T SRAM are about 200)~2/transistor. Tightly packed, carefully hand- 
crafted logic is also about 200),2/transistor. Loosely packed full custom 
logic is about 300~2/transistor. Standard cells are about 1000),2/transistor. 
In some cases (shifters, muxes, decoders), we also include wiring area in our 
estimates. 

Block routing takes about 30% of the chip area. Standard cell routing 
takes 60% of the block. The pad frame reduces the die by about lmm. For 
example, the largest die available on a MOSIS 2/Z run is 7.9x9.2mm. Of 
this, 6.9xS.2mm, or 56.6mm 2, is available for logic and routing. Of this, 
17mm 2 is routing, and 40mm 2 is logic. In 2/z CMOS, l a m b d a -  l/z, so 
there is room for 133,000 transistors at 300,~2/transistor. 

The number of transistors required to implement a function can vary 
significantly depending on the design style. For example, a full adder im- 
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plemented with gate logic requires about 30 transistors. However, it can 
be implemented in 15 transistors using pass-transistor logic. Which is best 
depends on desired performance and power dissipation, input drive and 
output load. 

We maintain a list of leafcells, the number of transistors they require, 
and their area-per-transistor, which we reference in estimating requirements 
of new designs. We also have a set of "tiling functions" which we use to 
construct complex blocks. For example, an N x M bit multiplier requires 
roughly N M  full adders, whether it is implemented as an array or a tree. 

This technique is especially well suited to spreadsheet implementation, 
and is especially useful during the early stages of architectural exploration 
and feasibility analysis in an area-limited design. 

item area 

memory 
logic 

control 
block routing 

std cell routing 
padframe 

200,12 / transistor 
300,12 / transistor 
900,~ 2 / transistor 

+30% 
+60% 
+ l m m  

Table 8: Area estimation rules. 

Table 8 summarizes the technique described above. Transistor counts 
of various logic elements and tiling functions are summarized in Table 9. 
This information can be supplemented by using block sizes and transistor 
counts of subsystems from already implemented chips. 

6 . 2  P e r f o r m a n c e  e s t i m a t i o n  

We estimate performance using a simple RC timing model based on the 
RSIM simulator [Ter82], in which transistors are calibrated to have an 
effective resistance charging or discharging a node capacitance. 

We build the following equations into our spreadsheet models to allow 
the performance estimates to scale with technology. The symbology of these 
equations follows the development in Hodges and Jackson [H]83]. 
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function transistor count 

DRAM 1 
SRAM 6 
tgate 
inv, mux 
nand, nor 
x o r  

latch 
TSPC latch 
halfadder 
fulladder 
3:2 adder 
BRB adder 

N-input  mux 

10 
12 
20 
30 
40 
60 

4N/3  
N-bi t  shifter 
N-bi t  comparator  
N-bi t  counter 
N-bi t  ripple carry adder 
N-bi t  carry select adder 
N • M-bi t  multiplier 

log2N 
20N 
14N 

NTy,~ 
2g(Tf,~ + 2) 

NMTf~ 

Table 9" Transistor count summary.  Tf,~ is the number of transistors in a 
fulladder. 
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Effective resistance of transistors 

llin = k/2(2 * (Vgs-Vt) * Vds - Vds^2) Vds <= Vgs - Vt 

Isat = k/2(Vgs - Vt)^2 Vds >= Vgs - Vt 

lav = integrate(I * dt)/T 

reff = DV /Iav 

= const * k 

kn = un * cox kp = up * cox AIV^2 

rn = I/kn/(Vdd - Vt) rp = llkp/(Vdd - Vt) ohmslsq 

Kn = rn * i / w Kp = rp * i / w ohms 

Parasitic capacitance 

cg = eox / tox 

cox = cg 

xj = (2*esi/q/NA*(V-Vt))^.5 

cj = esi / xj 
cjsw = 3 * cj * xj = 3 * e s i  
ci = eox / hi 

cisw = ci * ti 

f a r a d / m ^ 2  
f a r a d / m ^ 2  
meters 

farad/m^2 

farad/m 

farad/m^2 

farad/m 

Propagation delay 

tpu = Kp * (Cd + Ci + Cg) 

tpd = Kn * (Cd + Ci + Cg) 

sec 

sec 

Table 10 summarizes the equations we use to compute  propagat ion de- 
lay. Capaci tance formulas were obtained from [ST83]. The effective resis- 
tance should be increased to reflect velocity saturat ion,  especially in short 
channel devices. Velocity saturat ion occurs at around 4V in 2.0~ CMOS. 

6.3 P o w e r  e s t i m a t i o n  

There are three principal components  to power dissipation in most  CMOS 
systems" 

Pd,- V2/Rd, 

P , , -  I , , V  

p,~ - C V  2 f 

where 
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Transistor resistance 

Id ,  --  k / 2 ( V g , -  V~) 2 Vd, >_ Vg , -  V~ 

k = UoCom A/V 2 

R = r l l w  f~ 

Parasitic capacitance 

cox --  eo~ / to~  farad/m 2 
r = V r l n ( N A N D / n ~ )  volts 
�9 d - V)/q/NA meters 
cj -- es~/md farad/m 2 
cjs~ - 3cjmj farad/m 
c~ - 1 .15Cox /h i  farad/m 2 
ci,,.,, = 1 . 4 0 e o = ( t i / h i )  ~ farad/m 

Propagation delay 

Table 10: Performance equations. Propagation delay is determined from 
the effective resistance of transistors and the parasitic capacitance of the 
nodes being switched. Current in short channel devices is reduced by ve- 
locity saturation. 
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V is the supply voltage 
C is the total capacitance being switched 
f is the clock frequency 
Rdr is the total static pullup or pulldown resistance 
I~c is the short-circuit current 
Pdc is the power dissipated at DC 
P~  is the power dissipated due to short-circuit current 
P ~  is the power dissipated by switching capacitance. 

Pdc can be designed out of a system, except leakage, which is usually 
on the order of a few microwatts [CTTF79, HKT+90], but Ps~ and P ~  
cannot. In a CMOS inverter, I ~  is the current which flows when both the 
N-transistor and P-transistor are on during switching. Powell and Chau 
[PC90] have reported that Ps~ can account for up to half the total power. 

We have done some investigations which suggest that the short circuit 
current can be significant if rise times are long and transistors are large, 
and that in most cases Psc can be reduced to less than 10% of total power 
by sizing transistors. This implies that short circuit current can be more of 
a problem in gate array or standard cell design, where transistors are fixed 
sizes or are sized to drive large loads. 

Consider a single CMOS inverter driving a purely capacitive load. Ini- 
tially, assume the gate is at 0 volts, so the P-transistor is on, the N-transistor 
is off, and the output is at 5 volts. Now, switch the gate from 0 to 5 volts. 
Ideally, the P-transistor should turn off instantly, the N-transistor should 
turn on and drain the charge off the output (actually supply electrons to 
the output) until the output potential reaches 0 volts. The work done (or 
energy consumed) by the inverter is just QV where Q is the charge on the 
output and V is the initial potential difference between the output and 
G ND. But Q = CV so the work done is CV 2. 

In practice, the input does not switch instantly, so both the N-transistor 
and the P-transistor are on for a short time, causing excess current to flow. 

We measured the short circuit charge for a variety of transistor sizes, rise 
times, and output loads using spice [Nag75] on a typical 2 micron CMOS 
technology from MOSIS. 

Figure 53 shows the current flowing through vdd and gnd supplies as 
the gate is switched first from 0 to 5 volts between 2ns and 7ns, and then 
from 5 to 0 volts between 40ns and 45ns. The short circuit current in each 
case is the smaller spike; it is the current flowing through the supply which 
should be off. The short circuit charge is the area under the short circuit 
current. In the figure the short circuit charge is about 15% of the charge 
initially on the output, so P,~ will be about 15% of P~ .  

Figure 54 shows short circuit charge as a percentage of output load vs 
input rise/fall time. Each graph has a pair of curves for each of 5 output 
loads: 0, 100, 200, 500, and 1000 fF. One curve in each pair is for a rising 
input, the other for a falling input. The short circuit charge for a given 
output load is nearly the same whether the input is rising or falling. The 
pair with no output load has the largest short circuit charge. 
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Figure 53: short circuit current 

The short circuit charge is negative for fast rise times because the cou- 
pling capacitance between the gate and the drains pulls the output  above 
5 volts. This deposits additional charge on the output  which must  then be 
removed. So there is an energy cost associated with switching an input too 
fast, and a finite rise time at which the net short circuit charge is exactly 
zero. 

In practice, we est imate power in a variety of ways. In some cases, when 
we have experience or know statistically what percentage of the nodes are 
switching, we use CV2f. In other cases, we use Powell and Chau's  power 
factor approximat ion (PFA) technique, which uses the energy of existing 
devices to predict new ones. In still other cases, when the devices have an 
analog behavior, such as sense amplifiers in memories and reduced voltage 
swing logic, we use spice to compute current and integrate to find charge 
dumped.  

We have modified the RSIM timing simulator to accumulate the charge 
dumped  as nodes switch during simulation. This is easy to do if the simu- 
lator is event driven. We compared RSIM's results on a signal processing 
chip we fabricated through MOSIS [B+87] with power measurements  done 
on a performance tester and found agreement to within 20%. 

We est imate power by est imating the capacitance switched on each 
clock cycle. We ignore short circuit current and DC leakage. In [BBP91], 
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Figure 54: short circuit charge as a percentage of output load vs rise time 
for different size devices 

we showed that  short circuit current can be optimized out of the system, 
a n d  b e c o m e s  neg l ig ib l e  a t  low v o l t a g e  b e c a u s e  the  c u r r e n t  a t  t he  switching 
t h r e s h o l d  of  a g a t e  is on ly  a few p e r c e n t  of  t he  c u r r e n t  w h e n  the  g a t e  is fu l ly  

on  due  to  t he  inc rease  in Vt /Via .  Leakage ,  on t he  o t h e r  h a n d ,  b e c o m e s  ve ry  

i m p o r t a n t  if t he  t h r e s h o l d  v o l t a g e  is r educed .  W e  have  d i scussed  e n e r g y  

o p t i m i z a t i o n  a t  low v o l t a g e  in [BP91b]  a n d  [BP91a] .  

The key element in our power estimation technique is obtaining an ac- 
curate estimate of circuit activity a. Results reported from event driven 
simulation suggest that  a is around 10%. That  is, around 10% of the nodes 
in the system switch at any given time. We have modified our RSIM sim- 
ulator to gather activity statistics during simulation, and have found good 
agreement with published results. We have found that  a as a measure of 
nodes switched is in most cases negligibly different from a as a measure of 
the fraction of capacitance switched. 

We analyzed one of the signal processing chips we designed which has 
19,918 nodes and 46,906 transistors. The chip has two 16-bit Brent-Kung 
adders, 3 32x16 4-port memories, and a 16x16 multiplier-accumulator. 
One 16-bit I /O bus was used in the simulation, and about 60 control pin 
inputs. There is an on-chip 2-phase clock generator. 

We found activities of 33% in the adders, 22% in the multiplier, 5% in 
the memories, and 10.6% in the chip overall. The I /O pads had an activity 
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of 13% even though they were in use on every clock cycle. The total energy 
of the chip was 17.3nJ per cycle. The clock circuits accounted for 25% of 
this total. Buses accounted for about 6%, and pads about 12% (the pads 
were not driving any external load). 

Given the activity a and the number of transistors Nt in a circuit, 
we can compute energy by E = aNtCtV 2, where Ct is the capacitance 
of a single transistor and V is the supply voltage. For 2# CMOS, we 
use Ct = 40fF. This allows 10fF each for the source, drain, gate, and 
interconnect. Capacitance, and therefore energy per device, scales as 1/S. 
For a 16x 16-bit multiplier we get E - 0.44 x 162 x 30x40e-15x52 - 3.4nJ. 
Power is then El, where f is the operating frequency" a 4nJ multiplier 
dissipates 100mW at 25MHz. 

6.4 Technology scaling 

i 

Figure 55: SP" one processor per synapse 

We have applied the area and performance estimation techniques to three 
different inner product processor architectures. The first (SP; see Figure 
55) has one processor per synapse. The second (NP; see Figure 56) has 
one processor per neuron, with the synaptic weights stored in memory local 
to each processor, similar to the Adaptive Solutions Xl architecture. The 
third (FP; see Figure 57) has a fixed number of processors on chip, and 

off-chip weights. 
SP has the lowest synaptic storage density but the highest computa- 

tional throughput.  F P has the lowest throughput, but the highest synaptic 
storage density and unlimited capacity. 
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Figure 56: NP: one processor per neuron 

G G ~ 
chip 

Figure 57" FP" off-chip weights 
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The number of processors which can be placed on a single F P  is I /O 
limited. Assuming 4 bit weights, 128 pins would be required to support 
32 processors. The I/O constraint can be substantially alleviated with 
multichip module (MCM) packaging [Joh90]; this allows far more flexibility 
in choosing die size and system partitioning. 

6.5 Technology and performance scaling of inner prod- 
uct processors 
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Figure 58: technology and performance scaling 

In Figure 58 we plotted the technology scaling trendlines of the SP,  N P ,  
and F P  architectures on the DARPA-style capacity-vs-performance graph, 
along with the DARPA application requirements. 

In Figure 59, we plotted the waferscale integration trendlines of the 
three architectures. The F P architecture has two trendlines. Since its 
weights are offchip, a waferscale implementation has the option of replicat- 
ing memory alone. In this case performance remains constant, but capacity 
improves. Interestingly, of the options shown, this one most closely matches 
the requirements of the DARPA applications. 

In Figure 60, we derive the architecture from the application and the 
technology. In a very rough sense, an application can be characterized by 
its capacity and performance requirements. An architecture can be loosely 
defined in terms of the connections serviced by a processor. For example, 
the SP  architecture has one connection per processor. The technology de- 
fines the available performance. According to Figure 60, the product of the 
available performance and the ratio of the desired capacity and performance 
determines the architecture. 
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Figure 60 suggests that  S P  is most appropriate for the signal processing 
application in 2.0 micron CMOS, but that  N P  is more appropriate in 1.0 
and 0.6 micron. By comparing chip DRAM capacities in the table (5 bit 
weights), we see that  the F P  architecture is best in all other cases except 
speech and vision-1 in 0.6 micron, where N P  is best. 

6 . 6  T e c h n o l o g y  s c a l i n g  r u l e s  a n d  e x a m p l e s  

To scale area, performance, and power to a desired technology, we build 
into our spreadsheet the parameters of a base technology (2.0 micron CMOS 
in our case; A0 = 1.0/i), compute S = A0/A, and apply the equations in 
Table 11. We leave V, the supply voltage, explicit so we can compare 
the impact of "constant voltage" scaling and full scaling. These equations 
follow the development in Hodges and Jackson [HJ83]. 

Table 12 shows how actual 2/~ numbers would look scaled for a range 
of technologies. In the table, R(12:2) is the effective resistance of a 12A x 
2A transistor. Cg, Cd, and Ci are nominal gate, diffusion, and wiring 
capacitances. Tgate is the propagation delay of a single gate. Tbrb is the 
propagation delay of a B RB adder. 

Table 13 shows typical spice parameters for different technologies. The 
"exp" row in the table shows the exponent which would be supplied to 
spice. For example, for 2.0/z, tox=403e-10, cpa, mla ,  and m2a are area 
capacitance of polysilicon, metal1, and metal2 in farads/meter  2. 

The information for 2.0, 1.6, and 1.2 # technologies was obtained from 
M OSIS. 16 runs were averaged in each technology, and the deck closest 
to the mean was selected as nominal. The 0.8 micron information was 
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Figure 60: algorithms and architectures 
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param 

tech 

fox 
COX 

UO 

k 
r 

~j 
~j 
cjsw 

scaling 

~/s 
S 

1/S o.5 
sO.5 
llSO.~/v 
g o . 5  

S / V  o.5 
S 

hi 1/S 
ti 1/S 
ci S 
cisw 1 

description 

;~o/~ 

gate oxide 
gate capacitance 

mobility 
transconductance 
resistance 

junction depth 
diffusion capacitance 
diffusion sidewall capacitance 

metal elevation 
metal thickness 
interconnect area capacitance 
interconnect sidewall capacitance 

R 1/S ~ device resistance 
C 1/S device capacitance 

Q v / s  device charge 
I S ~ (V - V,)2 device current 
tp V/(SI"5(V- V,) 2) propagation delay 

i S 2.5 (V - V,)2 current density 

p S ~  V~)2V device power 
P S 2"s (V - V~)2V power density 

Table 11: Technology scaling. V, is the threshold voltage. Current through 
short channel devices is reduced by velocity saturation. 
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tech 2.0 1.6 1.2 1.0 0.8 0.6 

S 
S 2 

1.0 1.3 1.7 2.0 2.5 3.3 

1.0 1.7 2.9 4.0 6.3 11.0 

clk S 2 20 34 58 80 125 220 MHz 

clk S 2 80 136 232 320 500 880 MHz 

R(12:2) 1/S 6.0 4.6 3.5 3.0 2.4 1.8 kohm 

Cg 1IS 20.0 15.4 11.8 10.0 8.0 6.1 ff 
Cd 1/S 2 40.0 23.5 13.8 10.0 6.3 3.6 ff 

Ci 1/S 40.0 30.8 23.6 20.0 16.0 12.2 ff 

Tga te  1IS 2 1.38 0.81 0.48 0.35 0.23 0.13 nsec 
T b r b  1/S 2 12.5 7.35 4.31 3.13 1.98 1.14 nsec 

Table 12" scaling example 

tech u0n u0p cgdon cgdop cjswn cjswp xjn xjp nsubn nsubp 
exp 0 0 -12 -12 -12 -12 -9 -9 +15 -+-15 

2.0 631 237 298 285 548 334 250 50 5.76 6.24 
1.6 583 186 573 494 588 184 
1.2 574 181 628 324 423 159 

0.8 447 101 229 271 200 200 157 138 85.58 79.65 

tech tox cpa ~n ~p mla  m2a 
exp -10 -6 -6 -6 -6 -6 tox I / S  

cpa S 
2.0 403 388 130 262 26 19 ~n S 3/2 
1.6 250 573 140 432 35 23 ~p S 
1.2 209 644 293 481 36 24 mla S 

0.8 170 794 547 570 79 31 m2a S I/2 

Table 13: nominal  process parameters  for different technologies 
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obtained from a much smaller dataset. 

These technologies all run at 5 volts, so S 2 performance is predicted by 
the formulas in Table 11. However, Table 13 shows that  mobility, uo, is not 
constant. Comparing 2.0/z and 0.8p, uo is scaling as 1/S  1/2. Now R scales 
as 1 / S / V / u o  - 1 /$1 /2 /V and C as 1/S  so propagation delay tp should 
then scale as 1/$3/2/V.  

According to Hodges and Jackson, mobility is a function of substrate 
doping, NA. NA increases as ,k decreases. As NA increases, collisions 
become more likely so mobility decreases. If the increase in NA is necessary 
to prevent breakdown in the presence of higher E fields in constant voltage 
scaling, then presumably N A  could be kept constant if V were scaled. 

tech tpd MHz Vdd MHz 
constV scaleV 

2.00 10.83n 92 5 
1.60 7.58n 132 5 
1.40 6.12n 163 5 
1.20 4.78n 209 5 
1.00 3.57n 280 5 
0.80 2.50n 400 5 
0.60 1.58n 634 3.3 
0.50 1.18n 849 3.3 
0.40 825p 1213 3.3 
0.30 520p 1921 3 
0.25 389p 2572 3 
0.10 90p 11143 2 

418 
560 

801 

1153 
1543 
4457 

Table 14: BRB adder-based clock circuit performance 

Table 14 shows predicted performance of self-timed BRB adder based 
clock driver [San89] in various technologies based on both constant V (S a/2) 
and scaled V (S). The numbers are in good agreement with observed 
performance at 2.0, 1.6, and 0.8/2 CMOS. Extrapolations below 0.5# are 
highly speculative. They serve as an upper bound on expected performance. 

Process variations can impact performance significantly. We have found 
the ratio of "fast-fast" models to "slow-slow" models to be a factor of two 
in performance, with "typical" models right in the middle. 

f f / typ  -- typ/ss  -- ~f2 

f f / s s  -- 2 

Performance degrades by a factor of 1.8 from 25degC, 5V to 130degC, 
4.5V. Worst case performance can therefore be as much as four times slower 
than best case when process and temperature variations are combined. 
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The technology scaling technique described in this section is sufficient 
to give a rough idea of performance in a target technology given measured 
performance in a known technology. However, actual performance can vary 
widely, especially at smaller feature sizes, depending on the optimization 
constraints. 

7 

7.1 

Miscellaneous topics 

Multichip modules 

Figure 61: MCM pad vs MOSIS TinyChip pad. The MCM pad capacitance 
is 50f'F. The TinyChip pad capacitance is 2pF (40x). 

Multichip modules (MCMs), and especially 3D stacked MCMs, offer ex- 
ceptional opportunities for implementing high performance, high capacity 
signal processing, especially since the high degree of parallelism, locality 
of" communication, and regularity of signal processing structure can all be 
exploited in the MCM environment. 

Power dissipation is a big concern due to the availability of massive par- 
allelism in signal processing computation. MCMs reduce communication 
energy by reducing wire length, and increase available interchip commu- 
nication bandwidth through area bonded I/Os. Silicon based approaches 
provide 25nF/cm intrinsic bypass capacitance, and very low inductance 
(0.1nil) solder bump pad connections. Power and ground connections, as 
well as system-wide clock distribution, can be delivered within the chip to 
the point of use. Pad driver size can be substantially reduced (see Figure 
61). 

MCMs can provide good noise isolation for low voltage operation, and 
naturally permit integration of level shifting interface components for com- 
municating with a high voltage external world. 
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7.2 Energy and capacity limits in VLSI 

technology 

optical 
0.8/~ digital 

energy 
J/c 

I0 13 
i0-~ 

analog 10 12 
0.1# digital 10 12 

biology 10 is 

capacity 
C/cm 3 

performance 
CPS/cm 3 

1010 1014 
1012 i0 a 

lO'r 
1010 
1012 

1013 
1015 
1013 

Table 15: Energy, capacity, and performance density for various technolo- 
gies. Assumptions: 100 cm ~ silicon per cm3; 8-bit synapses; 0.8/z technol- 
ogy: 5.0V; 0.1/~ technology: 0.5V. 

Table 15 was compiled at the 1992 Banff workshop on neural network 
hardware. It suggests that  VLSI implementations are much closer to match- 
ing biological performance density than either energy or storage density. 

The energy gap can be reduced in digital VLSI by lowering the supply 
voltage even further; this results in slower processors but achieves a bet- 
ter balance between the silicon area required for processing and the area 
required for weight storage. If arithmetic precision is reduced from 8 to 5 
bits, then computation energy can be reduced by a factor of 2.5. If the 
supply voltage can be reduced from 500mV to 120mV within the neural 
processors, energy can be reduced another factor of 17. Together these two 
improvements reduce energy by a factor of 40, placing 0.1/z digital energy 
per connection within a factor of 20 of biology. 

7.3 Low voltage digital logic 

In the preceding section, we showed that  there is a significant challenge in 
matching biological energy efficiency in neural network computation. This 
translates directly to a challenge in reducing power dissipation: at lnJ  per 
connection, 1016 connections per second is 10 megawatts. Energy scales as 
V2/S. What  are the limits on V? We are building demonstration CMOS 
circuits with supply and threshold voltages in the 100-500mV range with 
which we plan to study performance, yield, and reliability issues. 

We have found that  the performance does not degrade nearly as much 
as expected at low voltage if the process is optimiT.ed to operate at that  
voltage, especially for channel lengths under 0.5/z. The biggest reasons for 
this are: 1) velocity saturation is less severe at low voltage, 2) reduced 
substrate doping increases mobility, and 3) channel lengths can be reduced 
without having to worry about punchthrough. 

We have also found that device performance can be substantially im- 
proved by biasing the substrate to induce thresholds. We have shown 
[BP91b] that  minimum energy operation occurs when Vaa = V,, and  that  
the minimum energy V, occurs at V, = nVTln(ld/a), where n = (Co~ + 
Cdep)/Co, is the gate coupling coefficient that  determines what fraction of 
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the gate voltage appears at the silicon surface due to the capacitive volt- 
age divider between the gate capacitance and depletion region capacitance; 
VT = K T / q  is the thermal voltage (26mV at 300degK); ld is the logic 
depth; and a is the activity. This V~ minimizes total energy by equating 
switching energy, which decreases as Vdd is reduced, and leakage energy, 
which increases as V, is reduced. 

In section 5.1, we asserted that minimum energy occurs when ld - 10. In 
section 6.3, we said typical circuit activity is around 0.1. n is close to 1.4 for 
typical CMOS processes, giving a subthreshold slope ms of 84mV/decade. 
However, for a process optimized for low voltage, and with back bias, n 
is close to 1.0, so ms = 60mV/decade at 300degK. Then V, - 0.026 x 
In(10/0.1) = 120mV. A big question is how much variation in Vt to expect, 
and how much margin must be designed in at low voltage. Threshold 
variations will be reduced at low substrate doping concentrations. 

For minimum energy, we set Vdd -- Vt - 120mV. For minimum energy x 
time, we set Vdd -- 3Vt -- 360mV. If we can optimize the process, we choose 
the substrate doping so we get a 300mV threshold when the substrate bias 
is 3 volts. Using this approach, we expect submicron logic depth 10 circuits 
to operate in the 100MHz range and achieve on the order of 1 0 - 1 3 j  per 
connection. 
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I. INTRODUCTION 

The term filter is often used to describe a device in the form of a piece of 
physical hardware or computer software that is applied to a set of noisy data for 
the purpose of extracting information about a prescribed quantity of interest. The 
noise may arise from a variety of factors. For example, the sensor used to gather 
the data may be noisy, or the data available for processing may represent the 
output of a noisy channel. In any event, the filter is used to perform three basic 
information-processing tasks: 

�9 Filtering, which refers to the extraction of useful information at some time t 
by employing data measured up to and including time t. 

�9 Smoothing, which differs from filtering in that information about the 
quantity of interest need not be available at time t, and data measured later 
than time t can in fact be used to obtain this information. Smoothing is 
expected to be more accurate than filtering, since it involves the use of more 
data than that available for filtering. 

�9 Prediction, which is the forecasting side of information processing. The aim 
here is to derive information about the quantity of interest at time t+x for 
some x>0 by using data up to and including time t. 

Much has been written on the classical approach to the linear optimum 
filtering problem, assuming the availability of second-order statistical parameters 
(i.e., mean and covariance function) of the useful signal and unwanted additive 
noise. In this statistical approach, an error signal is usually defined between 
some desired response and the actual filter output, and the filter is designed to 
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minimize a cost function defined as the mean-squared value of the error signal. 
For stationary inputs, the resulting optimum filter is commonly known as the 
Wiener filter in recognition of the pioneering work done by Norbert Wiener in the 
1940s (Wiener, 1949). A more general solution to the linear optimum filtering 
problem is provided by the Kalman filter, so named after its originator (Kalman, 
1960). Compared to the Wiener filter, the Kalman filter is a more powerful 
device, with a wide variety of engineering applications. 

The design of Wiener filters and Kalman filters requires a priori 
knowledge of the second-order statistics of the data to be processed. These filters 
are therefore optimum in their individual ways only when the assumed statistical 
model of the data exactly matches the actual statistical characteristics of the input 
data. In most practical situations, however, we simply do not have the statistical 
parameters needed to design a Wiener filter or Kalman filter, in which case we 
have to resort to the use of an adaptive filter. By such a device we mean one that 
is self-designing in the sense that the adaptive filter relies for its operation on a 
recursive algorithm, which makes it possible for the filter to operate satisfactorily 
in an environment where knowledge of the relevant signal characteristics is not 
available. The algorithm starts from some prescribed initial conditions that 
represent complete ignorance about the environment; thereafter it proceeds to 
adjust the free parameters of the filter in a step-by-step fashion, such that after 
each step the filter becomes more knowledgeable about its environment (Haykin, 
1991; Widrow and Steams, 1985). Basically, the process involved in the 
parameter adjustments follows some form of error-correction learning, the 
purpose of which is to minimize the error signal in some statistical sense. 

H. CLASSIFICATION OF ADAPTIVE FILTERS 

An adaptive filter is formally defined as a self-designing device with 
time-varying parameters that are adjusted recursively in accordance with the 
input data. Consequently, an adaptive filter is in reality nonlinear in the sense that 
it does not obey the principle of superposition. 

Adaptive filters may be classified in three different ways, depending on 
the feature of interest, as described next. 

A. Linear Versus Nonlinear Adaptive Filters 

Notwithstanding the inherently nonlinear behavior of adaptive filters, 
they are commonly classified into linear and nonlinear adaptive filters, depending 
on whether the basic computational units used in their construction are linear or 
not. Specifically, in a linear adaptive filter the estimate of a quantity of interest is 
computed at the filter output as a linear combination of the available set of 
observations applied to the filter input; because of its very nature, a linear 
adaptive filter involves a single computational unit for each output. The 
ubiquitous least-mean-square (LMS) algorithm, originated by Widrow and Hoff 
(1960), is an important example of linear adaptive filtering. Indeed, the LMS 
algorithm is the work horse of traditional forms of the ever-expanding field of 
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adaptive signal processing. Another important example of linear adaptive 
filtering is the recursive least-squares (RLS) algorithm, which may be viewed as 
a special case of Kalman filtering. The LMS algorithm is "stochastic", providing 
an approximation to Wiener filtering formulated in accordance with the method 
of steepest descent. On the other hand, the RLS algorithm is "exact", providing a 
recursive solution to the linear filtering problem formulated in accordance with 
the method of least squares that goes back to Gauss. The LMS algorithm offers 
simplicity of implementation and a robust performance in tracking statistical 
variations of a nonstationary environment. The RI~ algorithm, on the other 
hand, offers a faster rate of convergence (defined below) than the LMS algorithm 
at the expense of increased computational complexity; however, its tracking 
behavior is usually worse than that of the LMS algorithm. Various schemes, 
known collectively as fast algorithms (Haykin, 1991), have been devised to 
improve the computational efficiency of recursive least-squares estimation. In 
any event, a major limitation of all linear adaptive filtering algorithms is the 
inability to exploit higher-order statistics of the input data, which, in turn, 
restricts the scope of their practical applications. 

In contrast, nonlinear adaptive filters involve the use of nonlinear 
computational elements, which make it possible to exploit the full information 
content of the input data. Examples of nonlinear adaptive filters include Volterra 
filters and neural networks. Naturally, the presence of nonlinearity makes it 
difficult to analyse mathematically the behavior of nonlinear adaptive filters in a 
way comparable to their linear counterpart. 

B. Nonrecursive Versus Recursive Adaptive Filters 

Another way of classifying adaptive filters is in terms of whether or not 
their physical construction involves any form of feedback. We thus speak of 
nonrecursive and recursive adaptive filters. A nonrecursive adaptive filter has 
finite memory, whereas a recursive adaptive filter has infinite memory that fades 
with time. A tapped-delay-line filter (i.e., a discrete-time filter with finite- 
duration impulse response) operating in accordance with the LMS algorithm is an 
example of a nonrecursive adaptive filter. On the other hand, an adaptive scheme 
using an infinite-duration impulse response (IIR) filter (Shynk, 1989) is an 
example of a recursive adaptive filter, in this latter example, the adaptive filter 
uses a single computational unit with feedback built into its design. Note also 
that, according to this classification, the term "recursive" does not refer to the 
algorithmic adjustment of free Ikarmneters of the filter, but rather, as already 
stated, to the presence of some form of feedback in the filter's physical 
construction. 

C. Supervised Versus Unsupervised Adaptive Filters 

Yet another way in which adaptive filters may be classified is in terms of 
how the desired response (needed for executing the error-correction learning 
process) is actually provided. 

Specifically, we may s ~  of a supervised adaptive filter, the operation 
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of which requires a "teacher" for supplying the desired response. Examples of 
supervised adaptive filtering tasks include the following: 

Identification, where the adaptive filter is used to provide a model that 
represents the best fit (in some statistical sense) to an unknown plant (e.g., 
control system). In this class of applications, the unknown plant and the 
adaptive filter share a common input, and the output of the plant provides the 
desired response for the adaptive filter; both the input and output represent 
histories over time. 

Inverse modeling, where the function of the adaptive filter is to provide an 
inverse model connected in cascade with the unknown plant; in this case, 
some practical mechanism has to be found to supply the desired response. 
Adaptive equalization of an unknown communication channel is an 
important example of inverse modeling. The objective here is to 
accommodate the highest possible rate of digital data transmission through 
the channel, subject to a specified reliability that is usually measured in 
terms of the error rate (i.e., average probability of symbol error). Typically, 
data transmission through the channel is limited by intersymbol interference 
(ISI) caused by dispersion in the communication system. Adaptive 
equalization provides a powerful method to control ISI and also to combat 
the effects of channel noise. Indeed, every modem (modulator-demodulator), 
designed to facilitate the transmission of computer data over a voice-grade 
telephone channel, employs some form of adaptive equalization (Qureshi, 
1985). 

Interference cancellation, where the adaptive filter is used to suppress an 
unknown interference contained (alongside an information-bearing signal of 
interest) in a primary signal that serves as the desired response. The input to 
the adaptive filter is represented by a reference signal that is dominated 
essentially by a correlated version of the unknown interference. To achieve 
these functional requirements, an interference cancellation system uses two 
separate sensors: one sensor supplies the primary signal, and the other sensor 
is designed specifically to supply the reference signal. Adaptive 
beamforming (Compton, 1988) is an important example of interference 
cancellation; this operation is a form of spatial filtering, the purpose of which 
is to distinguish between the spatial properties of a target signal of interest 
and an interfering signal. Another example is that of echo cancellation 
(Sondhi and Berkley, 1980) used in long-distance telephone communications 
over a satellite channel; in this latter application, adaptive (temporal) 
filtering is used to synthesize a replica of the echo experienceA on the 
satellite channel due to unavoidable impedance mismatch at the receiving 
point and then to subtract it from the received signal. 

On the other hand, we may speak of an unsupervised or self-organized 
adaptive filter, in which the error-correction learning process proceexls without 
the need for a separate input (i.e., teacher) supplying the desired response. 
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Important examples of self-organized adaptive filtering tasks include the 
following: 

Prediction, where the function of the adaptive filter is to provide the 
optimum prediction (in some statistical sense) of the present value of an 
input signal, given a past record of the input. In this application, the present 
value of the input signal serves as the desired response. 

Blind deconvolution, the need for which arises in hands-free telephone, blind 
equalization, seismic deconvolution and image restoration, just to mention a 
few examples. The use of a hands-free telephone is severely limited by the 
barrel effect due to acoustic reverberation produceA in the surrounding 
environment of the near-end talker; the adaptive cancellation of this 
reverberation is a blind deconvolution problem. In blind equalization the 
requirement is to develop the inverse model of an unknown channel, given 
only the signal measured at the channel output. The seismic deconvolution 
problem is complicated by the fact that the exact waveform of the actual 
excitation responsible for the generation of the received signal is usually 
unknown. In image restoration we have an unknown system that represents 
blurring effects caused by photographic or electronic imperfections or both. 
In all these situations, the system of interest is unknown and its input is 
inaccessible; hence, a precise knowledge of the actual signal applied to the 
input of the system is not available for processing. To perform blind 
deconvolution, we are however permitted to invoke some reasonable 
assumptions about the statistics of the input signal. Given this prior 
knowledge, we proceexi to solve the blind deconvolution problem by 
designing an adaptive filter that operates on the (available) received signal to 
produce an output signal whose statistics match those of the (unobservable) 
original signal as closely as possible (Haykin, 1994c). 

m .  CONTINUOUS LEARNING 

As mentioned previously, an adaptive filter undergoes a form of error- 
correction learning in the course of adjustments applied to its free parameters. 
More specifically, this learning process is of a continuous nature, which means 
that the adaptive filter learns continuously about its environment while the input 
signal is being processed; in other words, the learning process never stops. This 
form of learning should be carefully distinguished from the learning process that 
takes place in a certain class of neural networks, known as multilayer perceptrons 
trained with the back-propagation algorithm (Rumelhart and McClelland, 1986; 
Haykin, 1994a). In the latter case the neural network is first trained with a set of 
input-output examples representative of the environment in which it operates; 
when the training is completed the free parameters of the network are all ftr~d, 
and the network is then ready to undergo testing with input data not seen before. 
On the other hand, in continuous learning the free parameters of the filter 
undergo adjustments all the time. 
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There are two important issues involved in the study of continuous 
learning, namely, convergence and tracking; these two issues are considered in 
the sequel in turn. 

(a) Convergence. Typically, the design of a learning algorithm includes a 
learning-rate parameter, which controls the adjustments applied to the free 
parameters of the adaptive filter from one iteration to the next. For the learning 
algorithm to be convergent, certain constraints are imposeA on the value assigned 
to the learning-rate parameter. In particular, if the learning-rate parameter 
exceeds a critical value, the learning algorithm diverges (i.e., the adaptive filter 
becomes unstable). The most stringent criterion for convergence is usually 
convergence in the mean square. According to this criterion, the mean squared 
error, defined as the mean-squared value of the difference between the desired 
response and the actual output of the adaptive filter, should approach a constant 
value as the number of iterations approaches infinity. 

Of course, for such a criterion to be valid, the stochastic process from 
which the input data are picked would have to be stationary. When operating in 
such an environment, the adaptive filter starts from an arbitrary point on the error 
performance surface (i.e., a multidimensional plot of the mean-squared error 
versus the free parameters of the filter), and then moves in a step-by-step manner 
towards a minimum point of the surface. In the case of a linear adaptive filter, the 
minimum point is usually the global minimum of the error performance surface. 
On the other hand, in a nonlinear adaptive filter the minimum point may be a 
local minimum or a global minimum. 

The difference between the actual mean-squared error realized by the 
filter and the absolute minimum mean-squared error, expressed as a percentage of 
the latter quantity, is referred to as percentage misadjustment. Clearly, it is highly 
desirable to make the percentage misadjustment as small as possible. 

The number of iterations required by the learning algorithm to reach a 
steady state is referred to as the rate of convergence. Ordinarily, the smaller we 
make the learning-rate parameter, the smaller the misadjustment becomes, and 
the better is the filtering accuracy. Unfortunately, this is usually attained at the 
expense of a relatively slow rate of convergence. 

(b) Tracking. When the input signal is a sample function of a nonstationary 
process, as is frequently the case in practice, we have a more complicated 
situation on our hands. The error performance surface now executes a random 
motion of its own about some minimum point. Consequently, the adaptive filter 
has the task of not only finding a minimum point of the error performance surface 
but also tracking its motion with time. The important point to note is that the 
underlying mechanisms responsible for the convergence and tracking modes of 
operation of an adaptive filter are quite different. More specifically, a fast 
convergence performance does not necessarily guarantee a good tracking 
behavior. 
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IV. RECURRENT NEURAL NETWORKS 

Our interest in this chapter is in a particular class of nonlinear adaptive 
filters using recurrent neural networks. A recurrent neural network is a network 
made up of "artificial" neurons with one or more feeAback loops. The artificial 
neuron model of interest to us here consists of the following elements, as 
described in Fig. 1 (a): 

�9 A set of synapses characterized by weights that are fed by respective input 
signals. 

�9 A summer that produces a linear combination of the input signals, as shown 
by 

p (1) 

- Z w j i x i  
i=0 

where wjidenotes the weight of synapse i, and x i is the corresponding input 
signal. The index j refers to the neuron in question. The particular weight 
Wjo, corresponding to a fixed input x 0 = +1, defines the bias applied to neuron 
J. 

A sigmoidal activation function that squashes the output signal vj at the 
summer's output in accordance with the logistic function 

YJ - 1 + exp (--vj) 

(2) 

or the hyperbolic tangent function 

y j= (D.) 
(3) 

The neuron model described in Fig. l(a) is static (memoryless) in 
nature. A dynamic version of this model includes, in addition to the elements 
described in Fig. l(a), the parallel combination of a resistor and a capacitor 
connected across the input terminals of the nonlinear element as shown in Fig. 
l(b). This latter model, called an additive model, is basic to the operation of 
recurrent neural networks such as the continuous Hopfield network (Hopfield, 
1984) and recurrent back-propagation learning (Pineda, 1989). We will confine 
our attention largely to the model described in Fig. l(a); some notes pertaining to 
the additive model of Fig. 1 (b) are presented in the Discussion in Section VIII. 

Specifically, we are interested in the real-time recurrent learning 
(RTRL) algorithm (Williams and Zipser, 1989; McBride and Narendra, 1965). 
The network configuration for the algorithm is depicted in Fig. 2 for the example 
of a single output neuron and two hidden neurons; the input layer of the network 
shown in this example consists of three feedback inputs and four external inputs; 



96 SIMON HAYKIN 

Xo=+l 
Wjo 

Xl 
w jl 

vj 

.I 
"1 

~(.) T 

yj 

xp 

wjp 

(a) 

xo=+l  
wjo 

Wjl 
Xl 

D 

wjp 

~n 

~--~~'~~~_~ ~.~ 
_ . l . .  t . . . . . . . - . . -  m 

~ -- ~ T I I I - -  

Co) 

Yj 

Figure 1: (a) Static, and (b) Dynamic models of artificial neurons 
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the blocks labeled z 1, connected to the feeAback paths, represent one-unit delay 
elements. The network is fully recurrent in that the output of each neuron in the 
network is fed back to the input. The abundant presence of feedback in the 
network gives it a distinctive dynamic behavior that naturally accounts for t/me, 
an essential dimension of learning. This dynamic behavior is completely 
different from that attained by the use of finite-duration impulse response (FIR) 
filters for the synaptic connections of a multilayer perceptron as described in Wan 
(1994). 

Li (1992) has shown that a neural network trained with the RTRL 
algorithm can be a universal approximator of a differential trajectory on a 
compact time interval. Moreover, the RTRL algorithm does not require a priori 
knowledge of time dependences between the input data samples. However, a 
major limitation of the RTRL algorithm is that it is r intensive. In 
particular, the computational complexity in training grows as N 4, where N is the 
total number of neurons in the network. Accordingly, the computational 
requirement of the algorithm can be prohibitive when solving a difficult learning 
task (e.g., one-step prediction of a speech signal) that needs the use of a large N. 

Caffolis (1993) describes an improved implementation of the RTRL 
algorithm that makes it possible to increase the performance of the algorithm 
during the training phase by exploiting some a priori knowledge about the time 
necessities of the task at hand; the resulting reduction in computational 
complexity of the training phase enables the algorithm to handle more complex 
tasks. 

Wu and Niranjan (1994) describe another simplification of the RTRL 
algorithm, as briefly summarized here. Let yj(n) denote the output of neuron j in 
the fully recurrent neural network at time (iteration) n. Define the gradient 

=Cl (") = 

Oyj ( n ) (4) 

~Wkl (n) 
where wkt(n) is any synaptic weight in the network. In the RTRL algorithm as 
originally postulated by Williams and Zipser (1989), the calculation of gradient 
rc~(n) follows the recursive evolution process 

n~l ( n + l )  = 9' (v i (n)) Wji (n) lrJkl (n) + ~klUl (n) 
(5) 

where (4)' ( . )  is the derivative of the activation function ~ ( . )  with respect to 
its argument, and ~kl is a Kronecker delta; ut(n ) is defined by 

xt(n) if l e  A 
UI= 

Yt(n) if l e B  

(6) 
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Figure 2: Real-time recurrent leaving network 
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where A refers to the set of input nodes and B refers to the set of output neurons. 
Wu and Niranjan (1994) have proposed a simplification of the RTRL algorithm 
by replacing Eq. (5) with the following 

rCJkl(n+ 1) - %k (n) Zkl(n-- 1) +~jkZkl(n) 

where 

~ k  (n) - r (vj (n) ) wjk (n) 

zkt (n) = cp" (v k (n) ) u I (n) 

(7) 

(8) 

(9) 

Thus, the summation over all recurrent neurons in Eq. (5) vanishes, thereby 
saving a factor N in the order of computation requirement. Wu and Niranjan 
(1994) present simulation results using speech signals that demonstrate that their 
simplified RTRL algorithm can learn essentially the same tasks as the 
conventional RTRL algorithm. 

In the next section we present a pipelined modification of the RTRL 
algorithm that is motivated by neurobiological considerations, the use of which 
can make a dramatic reduction in computational complexity when learning 
difficult tasks; the reduction in complexity is significantly greater than that 
achieved by any other technique known to this author. The first version of this 
modification was described by Haykin and Li (1993). The new structure, called a 
pipelined recurrent neural network (PRNN), is particularly well suited for the 
one-step nonlinear prediction of nonstationary signals, nonlinear adaptive 
equalization, the identification of unknown nonlinear dynamic systems, and 
adaptive noise cancellation. In the next section, we consider the case of one-step 
prediction. 

V. THE PIPELINED ADAPTIVE PREDICTOR 

Construction 
Figure 3 shows a block diagram of a pipelined nonlinear adaptive 

predictor, consisting of a nonlinear subsection with many levels of recurrent 
processing, followed by a linear subsection. The nonlinear subsection performs a 
"global" mapping by virtue of feedback built into its design, and the linear 
subsection fine-tunes the final result by performing a "local" mapping. 

A detailed structure of the nonlinear subsection is shown in Fig. 4(a), 
involving a total of M levels of processing. Each level has a module and a 
comparator of its own. Every module consists of a recurrent neural network, 
which has N neurons. Figure 4(b) shows the detailed structure of module i. In 
addition to the p external inputs, there are N feeAback inputs. To accommodate a 
bias for each neuron, besides the p + N inputs, we include one input whose value 
is always +1. For each module, a total of N -  1 outputs are fed back to its input, 
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and the remaining output is applied directly to the next module. In the case of 
module M, a one-unit delayed version of the module's output is also fed back to 
the input. Thus, all the modules operate similarly in that they all have the same 
number of external inputs and feeAback nodes. Note that the timing of the 
external input vector 

X i ( n )  - -  X ( n -  i) (10) 

= [x (n - i) ,x (n - i - 1) , . . . ,x (i  - p  + 1 ) ] T 

applied to module i coincides with the timing of the output Yi, l(n-O computeA by 
the next module i+1 in the chain. Moreover, note that all the modules are 
designed to have exactly the same synaptic weight matrix. 

An overall cost function for the pipelined recurrent network of Fig. 4(a) 
is defined by 

M 
E (n)  s  2 = e i ( n )  

i=1 

(11) 

where the prediction error e~(n) is defined by 

e i ( n )  = x  ( n -  i + 1) -Yi,1 (n)  

and ~ is an exponential forgetting factor that lies in the range (0 < X < 1). The 
term 2~ i-1 is, roughly speaking, a measure of the memory of the pipelined current 
neural network. By minimizing the cost function e(n), the real-time supervised 
learning algorithm is used to calculate the change AW to the weight matrix W 
along the negative of the gradient of e(n) with respect to W. 

Turning next to the linear subsection, it consists of a tapped-delay-line 
filter whose tap inputs are defined by the present output Y l,l(n) of the nonlinear 
subsection and q-1 past value yl,l(n-1), yl,l(n-2) .... ,yl,l(n-q+l). With the desired 
response defined as the input x(n + 1) one step into the future, the tap weights of 
the linear subsection are adjusted in accordance with the LMS algorithm. 

For details of the algorithm used to design the nonlinear and linear 
subsections of the pipelined adaptive predictor, the reader is referred to the 
Appendix at the end of the chapter. 

Neurobiological Considerations 

The design of the pipelined neural network structure follows an 
important engineering principle, namely, the principle of divide and conquer: 

To solve a complex problem, break it into a set of simpler problems. 

According to Van Essen et al. [1992], this same principle is also 
reflected in the design of the brain, as follows: 
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�9 Separate modules are created for different subtasks, permitting the neural 
architecture to be optimized for particular types of computation. 

�9 The same module is replicated several times over. 
�9 A coordinated and efficient flow of information is maintained between the 

modules. 

The imlx)rtance of modularity as an important principle of learning is also 
stressed by Houk (1992). 

In a rather loose sense, all three elements of the principle of divide and 
conquer, viewed in a biological context also feature in the pipelined recurrent 
neural network (PRNN) of Fig. 4, as described here: 

�9 The PRNN is composed of M separate modules, each of which is designed to 
perform a one-step nonlinear prediction on an appropriately delayed version 
of the input signal vector. 

�9 The modules are identical, each designed as a recurrent neural network with 
a single output neuron. 

�9 Information flow into and out of the modules proceeds in a synchronized 
fashion. 

How to deal with multiple time series 

In some applications, we have to deal with the analysis of multiple time 
series that are correlated with each other. For example, in stock market data 
analysis we have different time series representing the highest, lowest, and 
closing daily values of a particular stock. Naturally, these different time series are 
correlated with each other, and the issue of interest is how to use them all to make 
a prediction of the closing value of the stock in question for the following day. 
Such a problem in one-step prediction is one of "data fusion". 

We may readily deal with this problem by expanding the input layer and 
therefore the set of synaptic weights corresponding to each module in the 
pipelined recurrent neural network in the manner shown in Fig. 5 pertaining to 
module i. Specifically, the external input applied to module i consists of the p-by- 
1 vectors xla{n), x2,,{n) .... ,xg,~{n), where g is the total number of time series to be 
considered. Assuming that the vector  X l,i(n) (whose elements are denoted by 
xl(n-l), xl(n-i-1) .... ,xl(n-i-p)) refers to the principal time series of interest, 
module i is designed to make a prediction of x l(n - i + 1). The cost function for 
the pipelined recurrent structure is essentially unchanged, retaining the 
mathematical form described in Eq. (11) except for a minor change in notation. 
Basically, the synaptic weights of module i are thus adjusted in the same way as 
before. 

Virtues of the Pipelined Recurrent Neural Network 

The pipelined recurrent neural network (PRNN) described herein offers 
the following features, with positive consequences of their own: 
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Figure 5: A Module i with g multiple input signal vectors 

Figure 6: (a) A male speech signal (800 samples) 
(b) Resulting squared prediction errors using the linear 

and nonlinear adaptive predictors 



104 SIMON HAYKIN 

Improved Stability (Convergence). According to Atiya (1988), the necessary 
condition for a recurrent neural network of any kind to converge to a unique 
fixed-point attractor is to satisfy the condition 

0 

1 

II wll 2 < 
(max I q 'i) 2 

(12) 

where q0' is the derivative of the nonlinear activation function with respect 
to its argument, and II w ll is the Euclidean norm of the full synaptic weight 
matrix of the network. The latter quantity is defined by 

J 

1/2 (13) 

where Wji denotes the synaptic weight of neuron j connected to neuron i. In 
Eq. (12) it is assumed that all the neurons use the same kind of activation 
function q0 ( . )  which is the most common case encountered in practice. 
Typically, the PRNN uses two or three neurons per module, which is much 
smaller than the corresponding number of neurons in a single recurrent 
network for solving a difficult signal processing task. This means that the 
Euclidean weight matrix W of each module in the PRNN is usually smaller 
than the corresponding value for a single recurrent network of comparable 
performance. Accordingly, for a given activation function q0 ( . ) ,  the 
PRNN is more likely to satisfy the stability criterion of Eq. (12) than a single 
recurrent neural network of comparable performance in the same number of 
neurons. 

Weight Sharing. Another important virtue of the PRNN is that all of its 
modules share exactly the same synaptic weight matrix W. Thus, with M 
modules and N neurons per module, the computational complexity of the 
PRNN is O(MN4). On the other hand, a conventional recurrent structure of 
training the same size has MN neurons, and its computational complexity is 
therefore O(M4N4). Clearly, for M > 1 learning algorithm of the PRNN has a 
significantly reduced computational complexity compared to RTRL 
algorithm of a single recurrent neural network of the same size; the 
reduction in computational complexity becomes more pronounced with 
increasing M. 

Nested Nonlinearity. The overall input-output relation of the PRNN exhibits 
a form of nested nonlinearity, similar to that found in a multilayer 
perceptron. Specifically, in the case of the PRNN depicted in Fig. 4, we may 
write 



0 

0 

1t 

RECURRENT NEURAL NETWORKS FOR ADAPTIVE FILTERING 105 

(14) 
Yl,1 (n)  = r  ( n - 1 )  ,..., r  ( n - M )  ,YM,1 ( n - 1 )  )... ) 

This characteristic has the beneficial effect of enhancing the computing 
power of the PRNN. 

Overlapping Data Windows. From Eq. (14) it is readily apparent that the 
individual modules of the PRNN operate on data windows that overlap with 
each other by one sampling period. Specifically, at each iteration the PRNN 
processes a total of p + M-1 input samples, where p is the order of each 
vector x and M is the number of modules. On the other hand, a single 
recurrent network processes only p input samples at each iteration. It follows 
therefore that the amount of information processed by the PRNN at each 
time instant may exceed the corresponding value pertaining to a single 
recurrent structure, depending on the correlation properties of the input data. 

Smoothed Cost Function. The cost function of the PRNN is defined as the 
exponentially weighted sum of squared estimation errors computed by the 
individual modules, as shown in Eq. (11). Hence, it may be argued that, in 
comparison with the conventional RTRL algorithm, the cost function I; (n)  
so defined is "closer" in form to that used in deriving the more elaborate 
steepest descent version of the learning algorithm originally formulated for 
recurrent neural networks by Williams and Zipser (1989). 

Data Fusion. A multiplicity of time series pertaining to a particular 
phenomenon of interest can be processed simultaneously simply by 
expanding the size of the input layer as described in the previous subsection, 
thereby exploiting the correlation that may exist among the various time 
series. Of course, this same remark also applies to a conventional recurrent 
network. 

VI. ONE-STEP PREDICTION OF A SPEECH SIGNAL 

In this section, we illustrate the application of the real-time nonlinear 
adaptive prediction described herein to the important case of a male speech 
signal: when recording audio data .... The recorded time series corresponding to 
this speech signal, sampled at 8 kHz, is made up of 10,000 points. 

The pipelined nonlinear predictor used for this speech signal has the 
following parameters. 

�9 Number of modules, M = 5. 
�9 Number of neurons per module, N = 2. 
�9 Number of external inputs, p = 4. 
�9 Length of tapped-delay-line filter, q = 12. 
�9 Exponential forgetting factor, ~, - 0.9. 
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Figure 6(a) displays the waveform of the actual speech signal (800 
samples). The solid curve in Fig. 6(b) shows the squared prediction error using 
the pipelined nonlinear predictor, and the dotted curve shows the corresponding 
results obtained using a 12-tap linear predictor operating in accordance with the 
LMS algorithm. The results presented in Fig. 6(b) clearly shows that the 
prediction of a speech signal using a nonlinear adaptive predictor provides a 
much better approximation to the actual speech signal than the linear predictor. 

For a quantitative evaluation of prediction performance, we may use the 
following gain measure expressed in decibels: 

R 
P 

- - 1 0  1og10(~52/~Sp2 ) 
(15) 

where ~i 2 is the average-mean-squared value of the speech signal at the 
�9 S o 

transmitter input, and ~i 2 ~s the corresponding value of the prediction error at the p 
output of the predictor. For 10,000 speech samples, by using the PRNN-based 
nonlinear predictor Rp is about 25.06 dB; by using the linear predictor, Rp is 
about 22.01 dB. This provides a quantitative demonstration of the superior 
performance of the nonlinear predictor over the linear predictor. 

Figure 7(a) shows the power spectrum of the resulting prediction errors. 
The power spectral density is fairly constant across a band from 200 Hz to 3000 
Hz. The solid line presents the average power spectrum on each frequency point. 
The two dashed lines correspond to the 95 percent confidence range. Moreover, 
Figure 7(b) shows the histogram of the prediction error, which is found to have a 
13 distribution. The conclusion to be drawn from these observations is that the 
(nonlinear) prediction error may be closely modeled as a white and 
approximately Gaussian noise process. This is testimony to the efficiency of the 
neural network-based predictor in extracting the information content of the 
speech signal almost fully. 

Finally, to demonstrate the computational efficiency of the PRNN as a 
one-step predictor, we computed the squared prediction error for the same speech 
signal of Fig. 6(a), this time however using the conventional RTRL algorithm for 
the following network parameters: 

�9 Number of neurons, N = 10 
�9 Number of external inputs, p = 4 
�9 Length of tapped-delay line filter, q = 12 
�9 Number of modules, M = 1 

The result of this latter computation is shown as the dotted curve in Fig. 8. This 
result is slightly worse than that obtained by using the PRNN, which is 
represented by the solid curve in Fig. 8. Most importantly, the computational 
complexity of the RTRL algorithm is, for this example, on the order of N 4 --- 104. 
This is at least two orders of magnitude greater than the corre~ponding 
computational complexity of training the PRNN, namely, M(N 4) = 5 x 2" = 80. 
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Figure 7: (a) Power spectrum of overall nonlinear prediction errors. 
(b) Histogram of overall nonlinear prediction errors 

Figure 8: Comparison of prediction errors with a larger size recurrent 
network (---) and a pipelined network (---) 
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VII. APPLICATIONS 

A fully recurrent neural network is endowed with a dynamic behavior, 
which makes it a powerful adaptive signal processing device for a variety of 
applications that involve time as an essential dimension of learning. Applications 
of recurrent neural networks reported in the literature include neurobiological 
modeling (Anastasio, 1991), linguistic tasks such as grammatical inference 
(Giles et al., 1992; Zeng et al., 1994), phoneme probability estimation in large 
vocabulary ~ h  recognition (Robinson, 1994), neurocontrol of nonlinear 
dynamical systems (Puskorius and Feldkamp, 1994), adaptive differential pulse- 
code modulation of speech signals (Haykin and Li, 1993), code-excited nonlinear 
predictive coding of speech signals (Wu et al., 1993), and adaptive equalization 
of communication channels (Kechriotis et al., 1994). In what follows we present 
highlights of the latter three applications. 

Coding Speech at Low-bit Rates 

A straightforward method of digitizing speech signals for transmission over a 
communication channel is through the use of pulse-code modulation (PCM), 
which operates at the standard rate of 64 kb/s. This high data rate demands a 
higher channel bandwidth for its implementation. However, in certain 
applications (e.g., secure communication over radio channels that are of low 
capacity), channel bandwidth is at a premium. In applications of this kind, there 
is a definite need for swech coding at low bit rates, while maintaining an 
acceptable fidelity or quality of reproduction (Jayant and Noll, 1984). In this 
context, two coding methods for speech that come to mind are adaptive 
differential pulse-code modulation and coded-excited prediction. 

An adaptive differential pulse-code modulation (ADPCM) system 
consists of an encoder and a decoder separated by a communication channel. The 
encoder, located in the transmitter, uses a feedback scheme that includes an 
adaptive quantizer at the forward path and an adaptive predictor in the feeBback 
path, as depicted in Fig. 9(a). The predictor, acting on a quantized version of the 
incoming speech signal, produces a one-step prediction of this signal. The 
prediction error, defined as the difference between the actual swe, ch signal and 
the one-step prediction so produced, is in turn quantized, thereby completing the 
feedback loop (Curler, 1952; Haykin, 1994b). The encoded version of the 
quantized prediction error constitutes the transmitted signal. This transmitted 
signal represents a compressed version of the original speech signal by virtue of 
removing the redundant (i.e., predictable) portion of the speech signal. The 
decoder, located in the receiver, employs an exact replica of the adaptive 
predictor used in the transmitter, as depicted in Fig. 9(b). In the absence of noise, 
the reconstructed speech signal at the receiver output is exactly the same as the 
original speech signal, except for noise due to the quantization process in the 
transmitter. The challenge in designing an ADPCM system is to perform signal 
reconstruction without transmitting any side-information, that is, to ensure that 
the receiver merely requires the (quantized) prediction error for its operation; the 
configuration described in Fig.9 makes it possible to realize this challenge. 
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The traditional form of ADPCM uses a linear adaptive predictor (Jayant 
and Noll, 1985). More specifically, in a 32 kb/s ADPCM system, accepted 
internationally as a standard coding technique for speech signals, the linear 
predictor consists of an infinite-duration impulse response filter whose transfer 
function has 6 zeros and 2 poles, and the free parameters which are adapted in 
accordance with a novel coefficient update algorithm that minimizes mistracking 
(Cointor, 1982). Yet it is widely recognized that a speech signal is the result of a 
dynamic process that is both nonlinear and nonstationary. It should not therefore 
be surprising to find that the use of a nonlinear predictor in the construction of an 
ADPCM system would provide a significant improvement in its performance. 
Indee~ this was first demonstrated by Haykin and Li (1993), using the PRNN- 
based prediction for the design of the nonlinear predictor. A more detailed study 
of the superior performance of an ADPCM using a PRNN-based predictor, 
compared to the AT&T version of the system using a linear predictor, is 
presented in a doctoral thesis by Li (1994). This latter study is supported by 
extensive quantitative evaluations and subjective tests. 

Turning next to the code-excited predictive coding of speech signals, the 
preferred multipath search coding procedure is that of code-book coding. In 
general, code-book coding is impractical ~ u s e  of the large size of the code 
book needed. However, exhaustive search of the code book to find the optimum 
innovation (prediction-error) sequence for encoding short segments of the speech 
signal becomes possible at very low bit rates (Schroeder and Atal, 1985). The 
encoding part of the system uses a speech synthesizer that consists of two time- 
varying filters, each with a predictor in the feedback loop, as shown in Fig. 10. 
The first feedback loop includes a long-delay (pitch) predictor that generates the 
pitch period of the voiced speech, whereas the second feedback loop includes a 
short-delay predictor to restore the spectral envelope (Schroeder and Atal, 1985). 
In the case of code-excited linear prediction (CELP) for high-quality s ~ h  at 
very low bit rates, both of these predictors are linear. Wu and Niranjan (1994) 
have investigated the use of nonlinear predictors for code-excited predictive 
speech coding. Specifically, they used a recurrent neural network trained with a 
simplified version of the RTRL algorithm described earlier. Here also it is 
reported that the use of a nonlinear predictor results in improved speech coding 
performance. 

Adaptive equalization of communication channels 

As mentioned previously, adaptive equalization may be viewed as a form of 
inverse modeling, such that the adaptive equalizer connected in cascade with a 
communication channel of interest approximates an ideal distortionless 
transmission system (i.e., one with a constant amplitude response and a linear 
phase response). In the case of a linear communication channel (e.g., a telephone 
channel used for digital data transmission), the traditional form of an adaptive 
equalizer consists of a relatively long tapped-delay line filter whose tap-weights 
are adjusted in accordance with the LMS algorithm (Qureshi, 1985). During 
training, the desired response for the adaptive equalizer is provided by means of a 
pseudo-noise (PN) sequence generator, which is located in the receiver and 
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which operates in synchronism with another PN sequence generator that supplies 
the input data applied to the transmitter input, as depicted in Fig. 11. 

In a recent paper, Kechriotis et al. (1994) have proposed recurrent neural 
network (RNN)-based adaptive equalizers for both tmineA adaptation and blind 
(self-organized) adaptation. The results presented therein may be summarized as 
follows (Kechriotis et al., 1994): 

Linear nonminimum-phase channels. For a simple linear minimum-phase 
channel with a discrete transfer function H(z) having a single zero at z=-0.7, 
where z 1 denotes the unit-delay element, the RNN-based nonlinear 
equalizer achieves a comparable or even smaller bit error rate (BER) than its 
linear counterpart (using the RLS algorithm). The slight improvement in 
performance is due to the fact that the impulse response of the RNN-based 
equalizer is infinitely long and therefore capable of inverse modeling the 
channel more accurately than is possible with the linear equalizer having a 
finite-duration impulse response. Moreover, the RNN-based equalizer can 
construct nonlinear decision regions, which is what is actually called for in 
the presence of channel noise (Chan et al., 1990). 

Partial-response channels. In a partial-response channel, an example of 
which is encountered in magnetic recording, the discrete transfer function 
H(z) has zeros on the unit circle in the z-plane. In situations of this kind, it is 
not feasible to build a linear adaptive equalizer with a satisfactory 
performance. Kechriotis et al. (1994) considers the example of a partial- 
response channel whose discrete transfer function H(z) has double zeros at 
z--+l. They show that a nonlinear equalizer, using a fully recurrent neural 
network with a single output neuron and a single hidden neuron, provides a 
bit error rate of 10 ~ for a signal-to-noise ratio of 20 dB at the receiver input; 
such a performance is well beyond the capability of a linear adaptive 
equalizer. 

Nonlinear channels. When the communication channel is both dispersive 
and nonlinear, we naturally expect that a nonlinear adaptive equalizer would 
outperform a linear one. Kechriotis et al. (1994) present examples 
demonstrating this property. 

The points made thus far have been in the context of a RNN-based 
equalizer supplied with a desired response for trained adaptation. Kechriotis et al. 
(1994) also considers the use of such an equalizer structure for the blind 
equalization of a communication channel. Specifically, if perfect equalization is 
attained, then the equalizer's output would have exactly the same statistical 
moments as the data sequence applied to the transmitter input. It is assumed that 
the latter sequence is drawn from an independent and identically distributed (iid) 
zero-mean distribution; that is, the higher-order moments of the transmitter input 
are known. Accordingly, the objective function is now defined by 
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4 

E(n- t -1 )  -" ~_ CLk(E[xk] -en+ l [~k]) 
k=l 

2 (16) 

where E [Xk],. is the kth moment of the sequence applied to the transmitter input, 
and En+ 1 [.2 ~] is the estimated kth moment of the equalizer output using its 
present and past sample values. The ~t k are fixed positive constants. The RTRL 
algorithm is now formulated so as to minimize the objective function e(n+l). 
Kechriotis et al. (1994) present results that demonstrate the superiority of the 
performance of the RNN-based adaptive equalizer over a linear blind equalizer 
using the Godard criterion (Godard, 1980). The computer experiments described 
therein pertain to (1) a linear mixed-phase channel whose discrete transfer 
function H(z) has a zero inside the unit circle and a zero outside the unit circle, 
and (2) a nonlinear channel. 

The conclusions to be drawn from the series of computer-oriented 
experiments described by Kechriotis et al. (1994) are: a nonlinear adaptive 
equalizer using a recurrent neural network exhibits a performance comparable to 
that of a traditionally linear equalizer when operating over a linear channel with a 
relatively mild interference, and it outperforms the linear equalizer by orders of 
magnitude when the channel has spectral nulls or severe nonlinear distortion. 

VIII. DISCUSSION 

In this chapter we have identified a fully recurrent neural network as a 
nonlinear dynamical system that is ideally suited to adaptive filtering applications 
such as identification, equalization (inverse modeling), prediction, and noise 
cancellation. For the adjustment of the free parameters (i.e., synaptic weights and 
bias values) of the network, we may use the real-time recurrent learning 
algorithm. To improve computational efficiency of the algorithm in a significant 
way, we may use a pipelined structure with multiple recurrent levels of 
processing. The neexl for this latter approach arises when tackling 
computationally difficult tasks that may require the use of a large number of 
neurons. 

The traditional form of the real-time recurrent learning algorithm, 
originally formulated by Williams and Zipser (1989), applies to real-valued data. 
In certain adaptive filtering applications (e.g., the adaptive equalization of a 
communication channel involving the use of M-ary phase-shift keying or M-ary 
quadrature-amplitude modulation), the baseband signal is complex valued. The 
free parameters of the recurrent neural network would then assume complex 
values too. To deal with situations of this kind, we may double the size of the 
input layer and that of the output layer to accommodate the fact that the input and 
output signals of the recurrent neural network consist of real and imaginary 
components. A more efficient procedure, however, is to adopt complex-valued 
synaptic weights for the characterization of the individual neurons in the 
network, and to use the complex version of the real-time recurrent learning 
algorithm for their computation. Such an algorithm is described by Kechriotis et 
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al. (1994). 
Another point of interest is that the conventional form of the RTRL 

algorithm is based on the memoryless model of a neuron depicted in Fig. l(a). 
For a more elaborate version of the RTRL algorithm, we may use the additive 
(RC) model of a neuron shown in Fig. 1 (b). It may be shown that this latter move 
has the effect of replacing the first-order recursion of Eq. (5), involving the 
gradient /I;~/, with a second-order one. Such an increase in computational 
complexity may improve the tracking behavior of the RTRL algorithm. However, 
in some experiments carried out on the one-step prediction of speech signals, we 
have found that the improvement in tracking performance is not large enough to 
justify the additional computational complexity. 

Finally, mention should be made of a paper by Bengio et al. (1994), in 
which three basic requirements are postdated for a parametric dynamical system 
to learn and store relevant state information: 

1. That the system be able to store information for an arbitrary time duration. 
2. That the system be resistant to noise. 
3. That the system be trainable (i.e., its free parameters be computable) in a 

reasonable time duration. 

Bengio et al. (1994) show that gradient-based learning algorithms (e.g., the 
RTRL algorithm) fail to meet the first two requirements and, consequently, face 
an increasingly difficult problem as the duration of dependences to be captured is 
increased. To design recurrent networks with improved memory retention, they 
propose alternative methods to standard gradient descent; such methods include 
simulated annealing, multi-grid random search, and time-weighted Pseudo- 
Newton optimization methods; the improvement is however attained at the cost 
of a much longer time to train the network. It may prove fruitful to examine the 
nonlinear adaptive prediction of speech signals and the nonlinear adaptive 
equalization of communication channels in light of the points made by Bengio et 
al. (1994). 
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APPENDIX: Algorithm for on-line training of the PRNN 

1. Real-time Adaptive Calculation of Nonlinear Subsection 

Prior prediction processing 

At the instant nth time point, using the input data, obtain the input vectors 
x l(n ) .... ,Xn(n ). The prior prediction is taken from Level M to Level 1. The 
output vector of Module i and the error signal of Level i are defined by, 
respectively, 

k' i (n )  -" q) ( W ,  x i (n) ,Yi+I ,1 (n- 1) ) 

e i (n)  -x(n-i+l)-Yi,l(n) 
where y~(n) denotes the prior prediction output of the ith module during the 
training process, and e~(n) is the corresponding error signal. After every 
module of PRNN finishes its prior prediction calculation, a series of error 
signals are obtained, namely, el(n), e2(n) ..... en(n). 

Updating the weight vector of modules 

An overall cost function for the pipelined recurrent neural network is defined 
by 

M 
13 (n) = ~~i-le~ (n) 

i=1 

(17) 

By minimizing the cost function I~ ( n ) ,  the gradient estimation algorithm is 
used to calculate the change A W  to the weight matrix W along the negative 
of the gradient of 1~ (n )  with respect to W. 

The change applied to the klth element in the weight matrix can be written as 

AWk, l _ _1,1 ~Wk,l ~i-1 eZi (n)  
(18) 

where 11 is a fixed learning-rate parameter, 1 < k < N and 1 < l < (19 + N + 1). 
Finally, the weight matrix is updated as 

(19) 

W ~ W + A W  
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Filtering Process 

Using the same input signal and updated weight matrix, the filtering 
calculation of a module is the same as the prior prediction. For example, the 
filtering process of module i is defined by 

n) - ( p ( ( W ,  xi) ( n ) ,Y i+ l , l ( n -1  
(2o) 

Sequentially, the filtering operation is executed from module M to module 1. 
The output Yl,l(n) of Module 1 is sent to the tappexl-delay-line filter as an 
overall output y(n). 

2. Adaptive Operation of Linear Subsection 

Outputting the optimal estimate 

The standard least-mean-square algorithm is used so as to produce the 
optimum estimate of .2 (n + 1 )" 

(n + 1) = wTy (n) 
(21) 

where 

y ( n )  - [Yl,1 (n) ,Yl ,1  (n -1) , ' - ' ,Y l ,1  (n-q+ 1)] r 
(22) 

Updating the weight of the linear filter 

Input the new sample of signal x(n + 1) as the desired signal. We define the 
estimation error or residual e(n + 1) as the difference between the desired 
response x(n + 1) and the estimated output, as shown by 

(23) 
e (n + 1) - x (n + 1) - wiry (n) 

The updated weight vector of the tapped-delay-line filter is written as: 

w t ~ w t + I.ty (n )  e (n  + 1 ) 
(24) 

where I.t is the step-size parameter. 

3. Recursive Calculation 

Let n = n + 1 and return to step 1. Repeat the real-time adaptive prediction 
until the input data stops. 
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Multiscale Signal Processing: 
From QMF to Wavelets 

Albert Benveniste* 

Abstract 

This is a tutorial I intended to relate to each other the following topics: 
multirate filtering and maximally decimated QMF filter banks, mulfireso- 
lution analysis and multiscale signal analysis and associated wavelet trans- 
forms. 

L Introduction 

Multiratefiltering [11] is now r e c o g ~  as an area of increasing importance 
in digital signal processing. The key issue in this area is how to handle properly 
the aliasing due to sampling below the Nyquist rate. Maximally decimatexl filter 
banks have been introduceA [19, 29, 30] that allow to design filter banks with 
an exact saving of the global sampling rate (e.g.,a 2-filter bank must involve 
downsampling by a factor of 2 in each subband). 

Multiscale signal analysis [14, 13] appears as an merg ing  alternative tech- 
nique to Fourier analysis. Wavelet and related transforms are becoming increas- 
ingly popular in this area. Multiscale signal recognition, i.e., performing multi- 
scale pattern recognition on signals, is certainly a desirable objective, although no 
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well established approach is available today for this purpose (the interested reader 
may however be refexred to [1, 2] for an attempt toward this direction). 

Finally, multiresolution analyses of L2-spacx, s of functions or kernels, and 
related wavelets [27], recently proved an extremely powerful toolbox for highly 
demanding mathematical problems in harmonic and functional analysis. They 
provide a very effective approach to derive new approximations and expansions 
of functions, or opezators, that are classically difficult to handle (integral equations, 
singular integral, pseudodifferential operators). These theories also provide a new 
theoretical support to the general area of multigrid methods [22, 25]. 

It has been recently recognized that these apparently different topics are closely 
related to each other, see [32], an interesting expository paper. This fact is precisely 
the subject of this short tutorial, mostly intended to readers with signal processing 
and otherwise general mathematical background. For the sake of simplicity, we 
decided to concentrate on the essential features, leaving aside unnecessary tech- 
nicalities: 1 D-domains, 2-filter banks, and infinite signals are only considered 
here. Openings are briefly presented which concern more advanceA results or 
generalizations. To emphasize the essentials of the topic, we also tried to sepa- 
rate as much as possible in our presentation the algebraic aspects (mostly related 
to the theory of Quadrature Mirror Filters -QMF- in signal processing) from 
those relevant to harmonic and functional analysis (issues of convergence and 
approximation). This is the originality of the paper. Finally, to avoid overlength 
and tedious calculations, we decided to have a relatively compact presentation of 
the mathematics, so that this paper is indeed worth of a p e n c i l - a n d - p ~  aided 
reading. 

The paper is organizexl as follows. Section II. is devoted to the presentation 
of the polyphase approach to QMF banks, this section has been much inspired by 
[30]. QMF syntheses are discussed in section UI., both unitary and non unitary. 
Section IV. is an important one : orthonormal decompositions of 12-spaces of 
signals are provided that result from QMF unitary banks. Up to this point, purely 
algebraic techniques are used (involving algebraic manipulations of filters and 
down/upsampling operators. Techniques from (functional and harmonic) analysis 
are first used in section V. where various kinds of wavelet bases are introduceA ; 
this section mostly relies on [12, 13]. A simple example of an application to 
issues of approximations in functional analysis is illustrated in section VI., where 
some of the basic principles of the so-called "BCR" (Beylkin-Coifman-Rokhlin) 
method of approximating integral operators are sketched. Finally an interesting 
use of QMF banks associated with wavelets for multiresolution processing of 
random signals is presented in section VII., based on [8]. 
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H. QMF Banks and the Polyphase approach 

In this section we present the polyphase approach promoted by Crochiere and 
Rabinex [11] to multirate processing of signals. This approach has also been 
extensively used by Vaidyanathan [30] for the design of maximally decimated 
filter banks and we largely follow this very nice paper in this section. It turns 
out that it is also extremely powerful to introduce orthonormal wavelets and their 
numerous clones as we shall see later. 

A. Down-- and up-sampling 

X - - - - - - - ~ ~ ~ )  ,..'~ Y 

The above diagram will represent down-sampling by a factor of 2 throughout 
this paper, i.e. y, - x2,. Accordingly 

X ( z )  - , . z - "  
f t  

y(z 2) E Yn 7,-2n -- E X2ng-2n 
n I1 

whence 
1 

Y(z 2) - ~ [ X ( z ) +  X ( - z ) ]  (1) 

Notice that the downsampling operator is not a filter for it is not time invariant (it 
relies on a particular choice of the 0 instant). Similarly 

Y 

represents up-sampling by a factor of 2, so that 

n n 

holds. 

(2) 
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x H @ 
U 

v 

V 

Y 

Fig. 1. Maximally decimateA filter bank 

B. �9 Maximally decimated filter banks 

The diagram of the figure 1 depicts such a filter bank. Using formulae (1,2), 
the input-output map is written as follows: 

Y(z) - ~(z)U(:) + ~(~)v(:) 

1 
= ~ [~(~)H(z) + ~(~)a(zl] x(~) 

1 + ~ [[t(z)H(-z) + ~(z)a(-z)]  X ( - z )  

(3) 

(4) 

In this formula, the expression (4) represents the aliasing component, whereas 
(3) represents the linear transfer component. Hence, for this linear map to be an 
(aliasfree) time,--invariant filter, we must have 

[I(z)H(-z)  + G(z)G(-z) = 0 (s) 

and, for perfect reconstruction 

:I(z)H(~) + ~(~)G(~) - (6) 

up to a delay. 

A sketch of history. 

The first paper to consider this problem is [19], where the following solution 
is proposed to satisfy the condition (5) for antialising: 

:i(z) = G ( - z )  , ~(~) = - H ( - ~ )  
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Then, the following choice for H 

G ( z ) -  H( -z )  

results in the following condition for perfect reconstruction: 

H 2 ( z ) -  H2( - z )  - 1 

for which no pleasant exact solution does exist. The first satisfactory solution was 
due to Smith & Bamwell in 1983 [29] and is explained next. Select H such that 

H(z)H(z-* ) + H ( - z ) H ( - z  -I ) - I 

(i.e. white noise ---, I-if] ---, [ ~ 2l-, white noise). Then the following choice 

H(z) H(z -I) + H(-z)  H(-z  -I) = I 
I I I 

rI(~) z-~ r zC(z) 

satisfies both antialiasing (6) and perfect reconstruction (5) conditions. The reader 
is referred to [30] for further historical information. 

C. The polyphase approach 

Consider the diagram (a) of the figure 2: It certainly satisfies both antialiasing 
and perfect reconstruction conditions. On the other hand, this diagram is clearly 
equivalent to the next one Co) of the same figure provided that 

E(~)k(z ) -  I (7) 

holds. This last diagram is now redrawn as in diagram (c) of the same figure, or, 
equivalently, as in the diagram (d) by setting 

[.o(z> . .z> ] [ .z> 
Go(z) G,(~) ' Oo(z) Oo(z) (8) 

and 

H(z) = Ho(z2) + z-I HI(z 2) 
G(z) - Co(z 2) + z -~a~(z 2) (9) 

and similarly for H, ~. Checking for solutions to (9) and then applying formulae 
(8,7) is known as the polyphase approach to the QMF problem. In the sequel, 
we shall mainly concentrate on matrix polynomial solutions to (9) to get FIR 
maximally decimated filter banks. 
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Y 
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Fig. 2. The polyphase approach: (a) stage 1, Co) stage 2, (r stage 3, ((1) stage 4 
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Fig. 3. Downsampling by a rate p = 3 

D. Openings 

The polyphase approach may be generalized in various ways. Rather than pre- 
senting a general framework for this, we shall scan some of these generalizations 
and discuss them. Some of these extensions are depicted in the figures 3 to 6. In 
these figures, the delays at the input of the polyphase filter bank are compensaWA 
by inverse delays which are noncausal, but corresponding causal delays such as 
provided in the figure 2 may be used as well whenever needed. The figure 3 
corresponds to multirate signal processing with a sampling rate p > 2 : thus the 
filter bank to be synthesiz~ is composed of p filters and the matrix E is now p • p. 
The figure 4 corresponds to multirate image processing with a sampling rate of 
2 x 2 - 4 : the downsampling operator denoted by 1 4 consists of selecting the 
�9 pixels of the grid ; the matrix E(zl ,  z2) is 4 • 4 with entries that are transfer 
functions in the two variables Zl (horizontal shift) and z2 (vertical shift). Separa- 
ble filters E(zl,  z2) = E1 (zl)E2(z2) may be synthesized in this case. The case of 
figure 5 is more interesting, it has ~ proposed by Fauveau [20]. The downsam- 
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v 

Zx 

Fig. 6. Hexagonal sampling of the plane. 

piing operator denoted by ~ 2 consists of selecting the �9 pixels of the grid, i.e. half 
of the pixels. One can see that this downsampling operator rotates the grid by ~r/2. 
Accordingly, when the 2 x 2 filter E moves across the downsampling operator 
(as done in figure 2-Co,c)), a change of  variable (zl , z2) : ; (zl z2,  Zl z 21) has 
to be performed ; performing this downsampling twice produces thus the change 
of variable (zl , z2) : ~ (zl z2, zl z~ -1) : .~ (z 2 , z 2), i.e. is equivalent to 
performing downsampling as in the figure 4. Thus synthesizing separable filters 
E will result in filter banks that are separable in the variables [zl z2, zl z21], this 
remark has been used by Fauveau in his implementation. Finally the figure 6 is 
just an "oblique" redrawing of figure 4. Other index sets could be considered 
as well, provided that they be associated with some kind of "regular grid" and 
appropriate pairs (E,/~) of operators can be synthesizeA. 

III .  Q M F  syn thes i s  

In this section, we check for 2-port transfer functions E and/~ satisfying 

E k -  I (10) 

Several solutions exist. Of particular interest are polynomial solutions we shall 
discuss throughtout this tutorial. 

A. Non-unitary QMF synthesis 

This word refers to any solution (E,/~) of equation (10). Such a solution 
does exist if and only if the 2-port polynomial matrix E is a unit in the ring of 
polynomial matrices, i.e. if it is un/modu/ar, say 2 

1 - det E(z) - H o ( z ) G l ( z )  - H l ( z ) G o ( z )  

2up to a delay and a a3nstant gain we don't  care here 
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Then we lake 
l~= E_l _ [ G1 

-Go 
which yields, up to a delay, 

-/'/1]no 
]~(z) -- -G0(z 2 ) - z  -1GI(z 2) 

~(z) = Ho(z 2 ) -  z - lH l ( z  2) (11) 

Finally, given H, the problem reduces to a Bezout or Diophantine equation 
to find G. A solution does exist ff and only ff the pair (H o, HI) is coprime. 
Cascade Ikarmnetriz~ons of unimodular E matrices are provided in [28], which 
structurally guaranty linear phase properties for the analysis and synthesis filter 
banks. Further results along these lines may be found in [32], together with a very 
nice introduction to wavelets for signal processing people. 

B@ Unitary QMF synthesis 

The question is now the following: find E lossless, i.e. such that 

E(z)E y(z - l )  = I 

and take/~(z) - E r (z -1) up to a delay. Now, the following equivalences are 
easy to check 3" 

E = [  H~ G,H1 ] lossless 

for z = e iw 

1 - 1/4012 + IGol 2 -  IH112+ IGal 2 
- [Hol 2 + IHal 2 - IGol  2 + IGll 2 

0 - HoHl + GoGt - HoGo + H1GI 
(12) 

1 [ H(z) G(z) ] A 
' ~  H ( - z )  G ( - z )  - J lossless 

Now, from (13) we deduce the following equalities 

(14) 

G1 (e iw) _ Hi (e iw) = __ G o ( e  i ' ' )  = ei~(,~) 
- 

3~ denotes the complex conjugate of z 
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where the last one is obtained by noticing that �9 = l / z  =~ I zl = 1. As a 
consequence there must exist an all-pass filter I(z)(lI(ei")l 2 = 1) such that 

G~ (~) = X(z)Ho(z -~ ) 
Go(z) = - I ( z ) H l ( z  - l )  

whence 

G(z) = Go(z 2) + z -~ G ~ ( : )  

_ z- I  I(z 2) (Ho(z -2) - zZl(z-2)) 
= z- I I (z2)H(-z  -1) 

If G polynomial is wanted, we must take I(z) = pure delay. Combining this with 
J losslcss yields 

H(z)H(z -1) + H ( - z ) H ( - z  -1) = 2 (15) 

or, equivalently 

I" (+++)12+ I+ (+":'+'+'))12= 2 (16) 

These equivalent conditions will be referred to in the sequel as the Quadrature 
Mirror Filter (QMF) condition. 

Summary for unitary QMF synthesis 

E lossless 

J lossless 

QMF: H(z)H(z -I) + H ( - z ) H ( - z  -1) = 2 
G(~) = ~-~ H( -~  -~ ) 

Finally, take, up to a delay, 

~(~) = H(~-~), d(z) - G(z-~) (17) 
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C. Synthesis of 2-port Iossless FIR polynomial transfer functions. 

Direct cascade pammetriz~on of lossless 2-port transfer functions. 

The following elementary block 

= - - s inc~  c o S ~  0 z -1  

is lossless. Hence, so is 

Conversely, we are given 

1 

E(z)= H Ea..(z) 

.1] 
Go G~ 

lossless. We can assume det E - 1, which implies 

(~8) 

Ho,nGI,. = HI,.Go,. (n = degE) (19) 

(Hi,m coefficient of z -m in Hi). Consider 

[ ] [ Ho HI a cosa 
Go G1 zs ina  

_s.o ] [ .1] 
z cos a Go GI 

From (19) we deduce 

31a = an " d~ f-li <_ n -  l, i = 0,1 (20) 

On the other hand. with a = an, and using (20). we get 

vice) 
GoCz) =-- -z-nil1(z-1)z-nH~ I =~ ~ '  = z - l G "  i = O, 1 

for some G i. Hence, setting E = E . ,  we get the decomposition 

[oson s.on][l 0] 
E . =  - s i n a .  cosa .  0 z -I  E . -1 ,  

deg E ._I  _ < n - I  

showing that the cascade decomposition (18) may be ~ as a general par'anetriza- 
tion of 2-port lossless polynomial transfer functions; such a factorization is orig- 
inally due to Potapov in the fifties. See also [21] for an overview of wave digital 
filter synthesis, where most of the classical lossless digital filter design techniques 
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are presented following a circuit theoretic point of view. An alternative related 
p a r a m e ~ o n  is 

1 

m = n  - k i n  Z -1  

which is equivalent to (18) up to a constant normalization gain. This parametriza- 
tion is used by Vaidyanathan [31] to synthetize a {low-pass, high-pass} QMF 
pair using optimization techniques. 

I. Daubechies' QMF unitary synthesis. 

{Low-pass, high-pass} QMF pairs can be synthetiz~ in an alternative way. 
Take H (z) of the form 

H(z) = (1 + z-1)N[-I(z) (typically low-pass) 

Then the condition 2 = H(z)H(z -1) + H ( - z ) H ( - z  -l ) is rewritten as 

( z+z-~) N 
1 - 1 +  2 

+ 
2 

Consider the equation 

1-- ( l + Z + Z - 1 )  Jv ( ) 2 Q(z)+ 1 -  z + z  -1 IV 
2 Q(-z)  (21) 

where Q(z -1) = Q(z). I. Daubechics [12, 13] proved the following important 
result: there exists a unique solution to (21) of degree 2N, and this solution 
satisfws 

Q >_ 0 

Then QMF synthesis reduces to a polynomial spectral factorization problem. 

Openings. 

We have presented hem the classical synthesis techniques for 2-port lossless 
polynomial transfer functions. It may be of interest however to recall the work 
done in the area of scattering theory, see [ 16, 17, 18]. This approach is based on 
the following fact. A 4 x 4 transfer matrix O is said to be J-lossless if its poles 
are strictly inside the unit disc and if it satisfies 4 

O(z)jO(z),  { <_ J for ,z, > l [ 1  0 1  (22) 
- J  f o r [ z [ - 1  where J -  0 - I  

4 A* denotes the hennitian transpose of the matrix A. 
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I 

[J Oll ~12 L I X 

~ Y  

Fig. 7. Synthesis of E lossless via the inverse scattering approach 

and I is the 2 x 2 identity matrix. Partitioning O as 

o =  02~ 022 

we derive from (22) the following inequalities where U(z) is an arbitrary lossless 
2 x 2 matrix transfer function" 

(23) 
for ]z I >_ 1 with equalities on the unit circle. But it turns out that (23) is equivalent 
to 

E(z)E(z)* ( <- I for Izl > 1 
= I  forlz I - 1  where (24) 

E - - (Uex2 + Oz2) -1 (UO11 + ~ 1 )  (251 

but (24) exactly means that E is lossless. Such a synthesis of the filter E is 
depicted in the figure 7. The interest of this approach is that pairs (O, U) can be 
found such that the McMillan degree of U be strictly smaller than that of E, so that 
applying recursively this procedure yields a cascade synthesis of E. A complete 
solution to this problem may be found in [16, 17, 18] in terms of cascade transfer 
function matrices. Furthermore interpolation conditions of the Nevanlinna-Pick 
type [16, 18] may be satisfied as well, which might be useful as we shall see 
later in sections V. and VI. when discussing "vanishing moment conditions" for 
wavelets. 
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IV. H i l b e r t  space  s t r u c t u r e s  o f  o r t h o n o r m a l  Q M F  syntheses .  

In this section, we investigate how orthonormal QMF banks give raise to some 
orthonormal decompositions o f / 2 - s ~  of signals. Such decompositions turn 
out to be useful (for instance) for coding purposes. 

A. Basic decompositions 

In what follows, we select a given discrete time index set that will serve as 
a reference for the various sampling rates we shall consider in the sequel. We 
denote by Z this discrete time reference. We denote by/2(nZ) (n integer) the 
space of square integrable signals zk such that z t ~ 0 only if k is a multiple of 

1 Z) the space of square integrable signals that are n. Similarly, we denote by/2(~ 
upsampled at a rate n. Using these notations, the following diagram 

x 

induces an operator 
n : t2 (z )  : t 2 (2z )  

and similarly for ft. Vice-versa 

induces an operator 
7~ �9 t2 (2z )  , t2CZ) 

Now, ff we take the case E = I in the diagram of the figure 2-b we get immediately 
the identities 

o - ~ - ~ 
= ~ . ,  ~ = ~ .  
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;ff 
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Fig. 8. 7/and 7/* 

where .* denotes the adjoint. Introducing E lossless yields an orthonormal change 
of basis in 12 (2Z) • (2Z), hence the above identities remain valid. Consequently, 
using the Mason rule, we may draw the 7~ and "H* operators as in the figure 8. 
The formulae (26) yield the decomposition 

Vo A /2(Z) = Im(7/*) @ Ira(0*) 

A V_, ~ W_, (27) 

we shall use in different ways in the sequel. 

B. Some coarse-scale decompositions 

1. A '~vave-packet" coarse-scale decomposition 

Using re~ursively (27), the diagram of the figure 9 yields on its leaves a 
decomposition into signals at coarser scales, namely 

V0 = ( ~  Im (T~,...T,~,) (28) 
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H 

to coarser scales 

Fig. 10. The wavelet tree 

where w = ton. . . tOl ,  to i ~ {0, 1 } ranges over all words of length n over the 
alphabet {0, 1 }, and 

To* = ~*,TI" = 0 "  (29) 

The name of the decomposition will be justified latex on. 

2. A wavelet coarse-scale decomposition 

Using again (27), the alternative diagram of the figure 10 yields the decompo- 
sition 

~;o = W - I ~ W - 2 ~ . . . ~ W _ . ~ P _ .  

= t m  

In this case itis usual to take for {H, G} a {low-pass,high--pass} p ~ .  

(3o) 

3. The smoothness issue 

In using analysis-and-synthesis QMF banks such as introduced above the 
following robustness issue emerges: suppose that the channel linking the analysis 
and the synthesis banks together is not perfect, i.e. (hopefully little) degradations 
may be causeA on the signals. This is certainly the case in coding applications, 
since at least quantization noise is introduced (and channel errors as well but 
infrequently). Then this additional disturbance is processed by the synthesis 
bank. In the case of the wavelet filter bank corresponding to figures 10 (analysis) 
and 12 (synthesis), the additional disturbance is processed by the operator (~*)". 
It is thus important to synthesize QMF banks that have the desirable property 
of smoothing out the effect of the distarbances: this is precisely the issue of 
smoothness for the wavelet associated with this QMF pair as we shall see in the 
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section to follow. Similarly, it is important that the same condition be satisfied 
by the operators 7"* for the wave-packet filter bank corresponding to figure 9 
(analysis) and the dual one (for synthesis). 

C0 Openings: 

1. Draw the tree of the figure 9 until infinity. In this figure, it is cut ac.o3rding 
to vertical lines. In the figure 10 the cut was taken along a parallel to the 
upper branch. It should be clear from these comments that many other cuts 
could be considered as well to yield different orthogonal decompositions. 
In general we get in this way decompositions of the form 

Vo = ~ Im(T~,) (31) 
wEW 

= 

where W is any cut of the tree, i.e. any subset of the set {0, 1 }* of all finite 
words over {0, 1 } such that 

�9 no w E W is a prefix of another element of W, 

�9 any element of {0, 1 }* is either a prefix of an element of W, or has 
some element of W as one of its prefixes. 

An example of a cut is shown in the figure 11. This allows us to decompose 
12-spaces of discrete time signals into orthonormal subspaces in various 
ways. This remark has been'used in [7, 33] to select decompositions that 
are best fitted to a given signal, according to some "entropy" criterion (in 
this setting, the best basis provides the shortest coding), with applications to 
speech coding reported successfuU in [33]. This remark has also been used 
in [7] to generate various altexnative bases of L 2 that are different from the 
wavelet bases (in particular the so-called "wave-packet" bases), see section 
V.. 

2. Assume we consider now a non-unitary QMF bank following section A.. 
Then all but the last formulae (26) remain valid. Hence (27) should be 
replaced by 

v0 t2(z)- Im(7 )+ Im( ) 
_ A Y-1 + W - 1  

where + refers here to complementary (but not necessary orthogonal) sub- 
spaces of Vo. Hence both the wave-packet tree of the figure 9 and the 
wavelet tree of the figure 10 could be reinterpreted in this weakex sense, 
giving raise to non-orthogonal decompositions of/2 ( Z ) into complementary 
subspaces of signals at coarser scales. 



MULTISCALE SIGNAL PROCESSING: FROM QMF TO WAVELETS 141 

Fig.  11. A cut  o f  the tree. 
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3. We have introduced the operator 7t as mapping/2(Z) into/2(2Z), and we 
have iterated this operator when considering the wavelet and wave-packet 
trees of owaaWrs. It would be more convenient to consider 7t as an operator 
mapping/a-signals at any given level of resolution into downsampled/2. 
signals, i.e. to consider 7t as an operator 

+oo +oo 

n----oo n----oo 

but this latter Hilbext space of signals is just ta(T) where T is the dyadic 
tree defined as follows: the nodes of T are the binary numbers, and t --, s 
is a branch of T if and only if t is obtained via canceling the last bit in 
8. QMF pairs can thus be considexe~ as operators defining orthonormal 
decompositions of /2(T) .  The algebra genezat~ by such QMF pairs is 
studied in [3] from a s y s ~  theoretic point of view. 

V. Introducing  orthonormai  wavelets  

In this section, we shall introduce orthonormal wavelets via the asymptotic 
analysis of QMF banks. 

AO Fine scale asymptotic behaviour of the orthonormai QMF bank, and 
multiresolution analysis of L2(R) 

This subsection is mainly based on [12, 13]. Consider again the QMF analysis 
filter bank as shown in the figure 10. It yields a coarse-sere decomposition 

12(z) = Vo 

= Wm ( ~  V_, 
m = - I  

that can be also interpreted as a fine-scale decomposition 

1 2 ( 2 - n Z )  - V. 

: 

k i n - 0  

(32) 

Oust change the name of the input signal space). This suggests to consider the 
"infinite length" synthesis bank of the figure 12, i.e. to take the limit for fine 
scaling. The corresponding infinite block-diagram of the figure 12 exhibits a 
single infinite branch, namely the top one (atl other branches cross this one at the 
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'to f iner s c a l e s  

Fig. 12. Infinite length synthesis filter bank 

first stage). Hence understanding this infinite be~viour amounts to study the top 
rightgoing branch, i.e. to ask for 

lim (7/*)" .60 - ? (33) 
t%---*OO 

Recall that 7 / i s  a (partial, i.e. non invertiblr isometry. It should be clear that 
(33) is not the proper way to study the infinite behaviour of the synthesis filter 
bank: in this bank, the resolution is multiplied by 2 at each stage of the cascade, 
so that we expect to end up with an "infinite" resolution, something that is better 
representeA with continuous time index rather than discrete one. Hence, what we 
shall do from the beginning is to imbed the discrete time index/2(2-n Z)-spac, es 
into L2(R) by considering functions that are constant on the dyadic intervals of 
corresponding length. More specifically, denote by L2, the Hilbert space Of the 
LZ-functions that are constant on the dyadic intervals of length 2-" ,  and associate 
/2(2-"Z) with L2n. The upsampling operator 1" 2 �9 L2n --, L2n+l is carried on as 
shown in the figure 13. In this picture, each grey rectangle represent one element 
of the canonical orthonormal basis of L2n (top) and L2n+l (bottom) respectively. 
The scaling by V~ has been introduce~ to make T 2 a unitary injective operator. 
The translation of (33) in this new framework is presented now. Introduce 

A 
X0 - X[-�89189 (characte~stir function) 

and consider the following recursion: 

Xt 
A 
= ~*X0 

= h,,,,xtO,,,_ +)2-,,<,,,+ +)2-,t 
m 
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Fig. 13. Upsampling in continuous time (note the scaling by a factor o1~ ~/2). 

X2 

and so on. These two recursion stages are depicted in the figure 14, where the 
merging arrows refer to additive superposition. The corresponding recursion 
involves the following operator ~*" 

"~* f(z) a_a= ,~ E hmf(2z- m) 
m 

(34) 

Let us for the moment assume that we have proved the following" 

the limit ff ~ tim (~-*)"Xo exists in the L2-sense, 
I 1 - ~ o o  

(35) 

{ rm @}meZ orthonormal sysw, m in L 2. (36) 

where r f ( z )  = f (z  + 1) denotes the translation by 1. Then the following 
algebraic properties can be derived based on the properties of the orthonormal 
QMF synthesis bank: 

Algebraic properties of the limit 

1. the function ~b satisfies the following fotpoint equation: 

4(,)  = v~  ~ h~4(2,  - m),  ~.e. 4 - ~ ' 4  (37) 

2. introducing 
~(z) = V~ E g m 6 ( 2 z -  m) A ~*~ (38) 
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1 1 
i .  i m .  

2 2 

h o 

h.2 ih2 
I I 

Fig. 14. Xo, X1, X2,'" ", ~b 
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we have 

r177 and 
{'rm @ } mE Z orthonormal system in L 2 

(39) 

3. Introducing the following translation and dilation operators (both are isome- 
tries of L2), 

rf(z) = f(z+l)(translation) (40) 

of(z) = Vr2f(2=) (dilation), V~r~ = or 2 

the following orthogonal decompositions of L 2 into "successive scales" 
hold [12, 13]: 

where 

+oo 
L '(R) = G w-  

! 

])n -- 
n- - I  

1 7 1 ~ - - 0 0  

(42) 

. = . .  

V.  
, , . . = . _  

W .  
= span{o"r"~6,  rn E Z }  

= s p a n { : r  ~r  m E Z} 

Proof (sketch of). 

Point 1. is immediate. For point 2., we use the formula 

[rk~] (z) - v/2 E hm~(2z + 2k - m) 

- Yr2E h,. [r2'-m,] (2z) 

and the corresponding one for ~p with g,. instead of h,.. This can be rewritten as 

~ - E hmr2k-m6 (43) 
f r t  

~ -  , r t  r = ~ g,. :s-,. ~ (44)  
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Hence, denoting by < .,. > the inner product in L 2 and using the fact that the 
r 'n ff form an orthonormal system in L 2, we may write 

< rk~,rZ~b > -- < ~r-lrk~,~r-lrl~b > 
(using (43,44)) -- 7~7*6k_t -- 0 (45) 

due to the identifies (26). Similarly, using again (26), we have 

< rk~b, rt~b > = < r > 
(using (44)) - G~*6k-z - 6k-z (46) 

which finishes to prove the point 2, and furthermore proves that the systems that 
_ _ _ .  

span the spaces V. and W .  are orthonormal. 
To prove (42) we remark that (43) implies V-l  C_ V0. On the other hand, 

for V--0 9 f - ~ k  ck ~r-I rk if, we have also thanks to (43) f - ~ k  ~ rk~ where 
c' - 7/c. A similar result holds for W-1 and ~7 respectively. Thus the identity 
(27) carries on to yield 

V 0 -  V-I  6) W-1 

and (42) follows by induction from the corresponding properties of the orthonor- 
real QMF bank. To derive (41) --- i.e. to prove that our decomposition actually 
spans the whole L2-space--requires more technical work however, and we refer 
the reader to [12, 13, 10]. Note that this latter result states formally that adding 
finer scales is a valid approximation prcr, eAure.t3 

By the way, what we have got is a 

multiresolution analysis of L 2 (R) 

in the sense of S. Mallat [23, 24] as reported in [ 12,13] and the system { ~r n r 'n ~,, m, n E 
Z} we have so obtained is termed an orthonormal wavelet basis. 

REMARK: 

when a non--unitary QMF bank is used, a more careful use of similar techniques 
allows to derive the bi--orthogonal wavelets due to Albert Cohen and Ingrid 
Daubechies, cf. remark 2 of section 2.. 

B. Existence and properties of the limit ~: proof of (35,36) 

Here we switch from algebra to analysis. 
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Existence of r proof of (35). 

Introducing the Fourier transform 

,]_+ l(=)e-+'+'~'d+,: 

the formula 

is rewritten as follows, 

r = Jimoo(~')"xo (47) 

l OO mtO 

~(~1 = q ~  H H( ~'~- ) 
n----I 

and the limit is defineA pointwise. This limit belongs to L 2 since, thanks to the 
QMF property, we know that the finite products (~*)n X0 are uniformly bounded 
in L 2. 

Proof of (36). 

The following equivalences hold: 

(~-,r m E Z} orthonormal ~ r--,2_., '~'l$(w + m2~r)l 2 - 1 

m~Z 

Introduce 

+(~) ~ ~ I<~(,.,, + m2~)l 2 
m c Z  

,.,(,.,..,) ~ IH(++'+')I2 

Then 

r 1 6 2  ~ +(~)=v~H(+'+)+(+) 
=~ P . O = O  

where the operator P,  is defined by 

2P. f (~)  = .(+)f(+) + .(+ + +)f(+ + +) (48) 

But, since the filter H satisfies the orthonormal QMF condition, we have 

,.,(+) + , (+  + ,-) = 2 (49)  
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i.e Pu is the transition probability of a Markov chain on the unit circle. Then, 
knowing that �9 is Pu-invariant, we want to deduce that it must be a constant. 
Using the following equivalences 

P u ~ = ~  =~ ~ =  1 

continuous Pu-invariant functions must be constant 

P~ ergodic 

J-P C o n f . ,  A. Raugi (IRMAR Rennes) gave in [8] nece-ssary and sufficient condi- 
tions on u for this Markov chain to be ergodic. Recall that ergodicity is a generic 
situation for Markov chains, so that QMF banks generally yield orthonormal 
wavelets. Similar results have been obtained in [5] by A. Cohen (CEREMADE, 
Paris) with different techniques. 

Smoothness conditions 

are useful when the so obtained basis of L a is used for harmonic or functional 
analysis. They also play a fundamental role in the success of wavelets as applied to 
coding of signals or images, see section 3.. For such applications, it is extremely 
important that the n-th itexate of the operator introduced in formula (34) 
converge to a smooth function (see the figure 14 for a picture of this) �9 this 
condition ensures a proper smoothing of quantization noise that it introduced 
by any coding scheme, it also improves robusmess against channel errors. The 
following theorean holds [ 12, 13] �9 

Theorem 1 (I. Daubechies) Assume H is selected of the foUowingform 

/ t ( z )  = (1 + z -~) ~q(z) (50) 

where, in addition to be selected for H to satisfy the orthonormal QMF property, 
the Jiter H satisfies the following conditions: 

I n . l l . I  ~ < oo,~ > 0 

sup I ~ ( ~ ' ) 1  = B < 2 M-~ 

then ~ satis~s 
Ir <__ c(1 + [w[) -N+(l~176 

and the convergence is pointwise. 
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This last inequality guaranties that ~ has its M-th dexivafive in L 2 for some M, 
but this index M is much smaller than N (in practice, for the wavelets obtained 
by the method of [12, 13], one has approximately M _ 0.2N). Better results on 
the regularity of ~ given the decay rate of H may be found in [15, 13, 6, 9, 10]. 

C@ Openings. 

1. (50) and the QMF condition together imply 

G(~ ~ )  = G'(~ ~ )  = ... = G ( m ( ~ )  
= Oforw = 0  

or, equivalently, 
~(0) - . . . -  ~('~)(0) - 0 

and, finally, via inverse Fourier transform, 

/ .  x",~ = o, n ___ N (52) 

Such vanishing moment conditions ~ l~a r  m be extremely useful for ap- 
proximating functions, or integral operators when a 2D-theory is consid- 
ered, see section VI.. 

Translate conditions (51) in terms of the lossless matrix transfer function E 
introduced in equation (8), we get 

0 = G ( 1 )  - G'(1) = . . . -  G(n)(1) (53) 

G(z) = [ 0  , ] E ( : ) [ ~ I  ] 

It turns out that synthesizing E's satisfying this condition is an instance of a 
Nevanlinna-Pick interpolation problem such as mentioned in the "opening" 
paragraph of section C.. It is a nonstandard one however since the con- 
straints (53) involve multiple roots that are on the unit circle [18]. Further 
work has to be performed to check how this synthesis method may be used 
for systematically constructing wavelets with various kinds of vanishing 
moment conditions. 

2. In subsection C., we have discussed how various cuts of the tree of figure 
9 may be considered, to yield various orthonormal decompositions of 12- 
spac~ of signals that are associated with them. Since we have seen that 
wavelet bases of L z have been constructed that are associated with the 
wavelet tree, it may be guessed that another basis of L 2 could be associated 
with the wave-packet tree of figure 9, and maybe as well that a different basis 
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may be associated with each "cut" of this tree. This informal conjecture 
received a formal positive answer in the papers [7, 33]: the wave-packet 
basis is introduce~ in [7], which corresponds to our "wave-packet" tree 
(hence the name of i0. And other bases are presented as well, that are the 
counterpart of all possible "cuts" of our tree. In fact, the wave-packet basis 
consists of the following family of functions [7] 

- k) �9 to a {0,  a z }  

where 7" 0 - ~-*, 7"x and notations similar to those of formulae (31) 
have been used. Moreover, restricting this family to all words w of length 
n yields a basis of Wn. 

VI. Efficient approximations of L2-functions 

I. Daubechies proved that, with further algebraic conditions on H, the follow- 
ing conditions may be satisfied: 

3xo E R" / ~(x + xo)z 'ndx - O" l <_ m < M (54) 

Recall that, on the other hand, 

f ~dx - 1 

Again could these vanishing moment conditions be translated in terms of the 
E losslcss matrix transfer function introduc~ in equation (8) to yield particular 
Ncvanlinna-Pick interpolation problems. We shall use these vanishing moment 
conditions to compute efficient expansions of functions of the M-th order Sobolev 
space. For this purpose, we consider the diagram of the figure 15. This diagram 
describes a two-step approximation procedure: 

1. project f onto the space ~,, of L2-functions at scale 2 -n, 

2. use the QMF analysis bank to further decompose the projection into an 
orthogonal expansion. 

Since the second stage has already been investigated, only the following problem 
remains to be investigated: compute 

< f, o'n'r'mO > 



(1
Q

 

Im
i [ 

iol
 

[~
 

iol
 

[~
 

El
 

r~
 

m
 

o~
1 

A
 

V
 



MULTISCALE SIGNAL PROCESSING: FROM QMF TO WAVELETS 153 

efficiently. This is explained next. Write the following equalities: 

<f, on~> = 

m 
! 

2~ / f(z)~(2nz)dz 

2-~ f f(2-nz)~(z)dz 
2-~ / f(2 -n (z + zo)) +(z + zo)dz 

A Taylor expansion of f around 2 -'+ Zo yields: 

f (2-nCz + Zo)) f (2-"+o) 
+2-nzf'(2-nZo)+... 
-F2-(M-I)nzM-I f(M-I) (2-nZo) 

2 - M n  
+ o  \ lu! I lM) 

so that, thanks to the vanishing moment conditions (54), we get the following 
single point approximation ! 

(2-'(M+'/2) ) 
< f, trnC~ >=  2 - ~ f  (2-nZo) + O \ M! I IM 

2D-genemliz~ons of this are useful to approximate integral Kernels involved in 
some integral equations (BCR algorithm, due to Beylkin, Coifman, and Rokhlin, 
see [4] [26]). 

VII. Application of orthonormal QMF banks to random sig- 
nals 

Consider again the"wave-pack~" tree of the figure 16. The following question 
has been considered by J-P Conze and A. Raugi [8]: 

What are the statistics of the signals 
on the leaves of the "wave-packet" tree ? 

More precisely, we want m investigate this question for very long trees. 

A. Filtering and decimation of signals 

Decimation of signals results in the following change of the spectral measure 
of the input signal: 
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X 

Introduce the spectral measure of the process X: 

EXoXm = d ' '~x(dw) 

we have 

f f(w)~.r(da,) - / f(~)~x(d.,)  
If X has a spectral density, we have, denoting by Rx(z) the spectnma of X: 

1 [Rx(z)+ R x ( - z ) ]  R v ( z )  - 

Now, considering the case of filtering and decimation, we get 

v 

f - 

Again, if X has a specman we denote by Rx, we get: 

1 [nux(z)+ R,,x(-z)] wh~ Rr(z) - 

R H x ( z ) -  H(z)Rx(z)H(z -1) 

Case of a pure frequency 

(55) 

(56) 

(57) 

(58) 

~ X  

Ry 

Case of a spectral density 

g x ( ~ )  

gv(~ )  

= 6..~176 
= ~(2~o) [ ~ .  + 6_~.] 

iH(d~)12 

gx(~ '~)~  ~ F(~)d~ 

- lev(d')d,,, ~ e,,r(~),~ 

(59) 

(60) 
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where P~ is the operator we already introduceA: 

2P.f (w)  = u(w)f(w) -t- u(w -I- +r)f(w + +r) 

0 Use of the "wave-packet" tree 

Consider again the figure 16, and introduce the following notations: 

X 

X w 

- (X,) ,  with spectral measure R x  (d~) 

= 7r Z = ~  

= Tw,...Tw,, where w = wn...wt E {0, 1 }n 

-- 7"~X 

In other words, we encode the paths of the tree via a dyadic coding; when infinite 
paths are considered, the associated coding is the dyadic expansion of the real 
number defined by this infinite path. We are thus intexeste~ in the limit of the 
statistics of X w when the length of the word w tends to infinity. Again, we 
consider two separate cases: 

Case of a pure frequency. 

The following formula holds: 

"l~x" - I f i  uw" (2mw~ [621"'la'o -l" 
where we used the notation 

(6~) 

u o ( ~ ) -  IH(ei'~)l 2, u l ( w ) =  IG(ei~)12 

Now, we make the following key remark: 

2mWo modl yields the dyadic expansion of Wo (62) 

Now, assume {H, G} is a {low-pass / high-pass} pair (cf figure 17): From the 
a l ive  condition and the formulae (62,61), we get the following asymptotic result, 
which holds for ]w[ "infinitely" large: 

7~x,, ~ 0 r wm = 2mwo mod I (63) 

From this result, we derive the fol lowing 
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0 x 7~ 
2 

Fig. 17. Low-pass / high-pass QMF bank. 

TESq2. 

the energy concentrates on the path encoding the dyadic expansion oleo. By 
the way, what we got is a 

{ multiscale isolation or pure frequencies ] 

Case of a density F(w) for X. 

Introduce the following notations: 

P, 

P .  

F~(,,) 

a i = 0 , 1  = Pui, 
A p,,....p,., 

A Pw F(w) spectral density of X w 

What we want to investigate here is 

1~ F,,, =??? 
Iwl--*oo 

A new difficulty arises here, namely Pro is a non homogeneous Markov Transition 
kernel (recall that, thanks to QMF, we do have Pw I = 1). Such non homogeneous 
operators have been studied by I. Daubechies and J. Lagarias in [15, 13] via fight 
bounds basexl on elementary linear otmator algebra. On the other hand, Conze 
and Raugi [8] have imbedded this problem into that of the analysis of a single 
homogeneous Markov transition kernel: this is done by randomizing the paths 
on the tree, i.e. for each sucaze, ssive decimation, select H or G at random using 
a (fair) coin tossing. Hence w is randomizeA. Now consider the spectral density 
Fw - P~ F of the process XW: it is an L2-function on the unit circle, and we 
have the following theorem: 



158 ALBERT BENVENISTE 

Theorem 2 (Conze-Raugi) For almost all inf~te  path w, 

L2(T) 
PwF , Cu, 

n . -+ o o  

where Cw is a constant spectral density with a power depending on the path w, 
and the convergence holds in the L2-sense on the unit circle T. In other words, 
X w - .  white noise withpower Cw. 

Case of several frequencies in eoloured noise. 

Since C~ << Dirae, an itemtive multisc~e procexlure to isolate frequencies in 
coloured noise can be derived from the theorean above. 

VIII, Conclusion 

We have provided an account of those concepts of multiscale signal process- 
ing that are concerned with QMF techniques and orthonormal wavelet transforms. 
As opposed to most classical presentations of this subject, we started from dis- 
crete time signal processing and QMF banks and exlpoited their properties as far 
as possible to approach the construction of wavelets. Aside from providing a 
new insight on this topic, we think this presentation enlightened some questions, 
namely: 

�9 How to exploit the suggestion of section 2. to geneaa~ other orthonormal 
decompositions of signal sp,mes and L2-spaces? A proposal for this has 
been provided in [33] where an entropy crite~on is p ~ t e d  to select a 
basis that is best fitted to a particular signal. Here, "best" refers to the 
mentioned entropy criterion. This method is applied to speech coding and 
the authors report s u ~ s f u l  results. 

�9 Is it possible to derive parameuizafions of loss-less 2-port transfer func- 
tions in the style of section C. to additionnally guaranty vanishing moment 
conditions such as provided by I. Daubechies' "explicit" examples? We 
have suggested to rely for this on the so-c~ed "scauexing theory" approach 
by translating such conditions into proper Nevanlinna-Pick interpolation 
problems. Further work has to be performed in this direction. 
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The Design of Frequency Sampling Filters 
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Abstract 

Under certain conditions, a frequency sampling filter can implement a 
linear phase filter more efficiently than an equivalent filter implemented by a 
direct convolution structure. However, the system function of a frequency 
sampling filter requires pole-zero cancellations on the unit circle. For 
practical implementations, finite word length effects usually prevent exact 
pole-zero cancellation which can result in filter instability. To prevent insta- 
bility, the poles and zeros on the unit circle can be moved to a circle of radius 
r where 0 < r < 1 by replacing z-1 with rz-1 in the filter's system function. 
The resulting filter is guaranteed to be stable; however, the filter's magnitude 
and phase characteristics are affected by the choice of r. This chapter devel- 
ops a method for determining optimal coefficients which minimizes a linear 
combination of the mean square error in the stopband and passband, and the 
sum of square error of tt'.e impulse response symmetry subject to passband and 
stopband constraints and a fixed value of r < 1. The optimization problem is 
solved using the Lagrange multiplier optimization method which results in a 
set of linear equations, the solution of which determines the filter's 
coefficients. 

I. Introduction 

Many digital signal processing systems require linear phase filtering. 
Digital linear phase filters designed by either the window design method[I] or 
the optimal filter design method[ 1] are generally implemented by the direct 
convolution method which uses the filter's impulse response as filter coeffi- 
cients. If a linear phase filter has a finite impulse response (FIR) of length N, 
then the filter's impulse response has the form 

h(n)={; (N-l-n) otherwiseO<-n<N-I 
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and a direct convolution implementation of the filter requires (N+ 1)/2 multi- 
plies and N-1 adds per output sample when N is odd and N/2 multiplies and 
N-1 adds per output sample when N is even Ill. As a filter's passband or tran- 
sition band narrows or its stopband requirements become more stringent, the 
length of the filter's impulse response increases. Therefore, if the filter is im- 
plemented using direct convolution, the filter's computational requirements 
also increase. 

Unlike direct convolution implementations which use the filter's im- 
pulse response as coefficients in the filter's implementation, frequency 
sampling filters use frequency samples, which are specific values from the 
filter's frequency response, as coefficients in the filter's implementation. The 
frequency sampling filter design technique discussed in this chapter interpo- 
lates a frequency response from a set of N evenly spaced samples from the fil- 
ter's frequency response. Although frequency sampling filters interpolate a 
frequency response through a set of frequency samples, the frequency 
response may not be well behaved between samples. References [2; 3, 4, 5; 6; 7, 8; 9; 
[10; l l; 12] describe some of the design methods currently used to control the 
interpolation errors between frequency samples. When using a frequency 
sampling filter to implement a frequency selective filter, the frequency sam- 
ples that lie in the filter's stopband can be set to zero. Thus, all of the non-ze- 
ro frequency samples lie in the filter's passband and transition band. There- 
fore, as a frequency sampling filter's passband and transition band narrow and 
the filter's stopband increases, the computational requirements of a frequency 
sampling filter can decrease. Thus, a frequency sampling filter has the poten- 
tial to implement narrowband frequency selective filters more efficiently than 
a direct convolution filter. 

Unlike a direct convolution implementation which is nonrecursive and 
thus inherently stable, a frequency sampling filter uses a recursive structure 
which places poles on the unit circle to cancel zeros on the unit circle. In 
practical implementations, finite word length effects typically prevent exact 
pole-zero cancellation. An uncancelled pole on the unit circle will cause a fre- 
quency sampling filter to be unstable. To prevent instability, the poles and 
zeros on the unit circle can be moved to a circle of radius r where 0 < r < 1 by 
replacing z -1 with rz -1 in the filter's system function. As a result, the filter is 
guaranteed to be stable, but the frequency response of the resultant frequency 
sampling filter is different from that of the original frequency sampling filter. 
The methods in references [2, 3; 4; 5; 6; 7; 8; 9; 10; 11; 12] design frequency sampling 
filters assuming r -  1, and then a value of r close to 1 is chosen so that the 
modified filter's frequency response does not differ much from the frequency 
response designed for r - 1. However, references [13; 14; 15; 16] show that the 
filter's output roundoff noise decreases as r decreases, and reference [13] also 
show that the filter's signal to noise ratio (SNR) improves as r decreases. As a 
result, there exists a need for a design technique which determines a value of r 
which produces an acceptable roundoff noise level while satisfying various 
frequency response design constraints. In this chapter, such a design method 
is developed. This design method minimizes a linear combination of the 



THE DESIGN OF FREQUENCY SAMPLING FILTERS 165 

mean square error between the desired and actual frequency responses in the 
passband and stopband, and the sum of square error of the impulse response 
symmetry while constraining r to a fixed value and the stopband frequency 
samples to zero. Additional constraints in the passband may be used to ap- 
proximate a desired passband response. This results in a constrained optimi- 
zation problem which can be solved by using the Lagrange multiplier 
optimization method. The method applies to both Type 1 and Type 2 
frequency sampling filters. 

II. Frequency Sampling Filters 

A. Type 1 Frequency Sampling Filters 

Consider a FIR filter which has an impulse response, h(n), of length N 
"s "CO 

and a frequency response, H(eJ ). Suppose we approximate H(el ) by a set of 
N values taken from the frequency response. Let H(k) for k e D where 
D - {0, 1, 2 . . . . .  N-1 } represent this set of values. For a Type 1 frequency 
sampling filter, we select the set H(k) for k ~ D so that 

H(k) = n(eJ~ k 
N 

where H(k) can be written as 

H(k) = In(k)le j~ 
Thus, for a Type 1 frequency sampling filter, the set, H(k) 1 for k e D, is cho- 
sen so that it represents a set of N evenly spaced samples taken from the fil- 
ter's frequency response for 0 < o3 < 2n. The impulse response, h(n), of 
length N which interpolates a frequency response through the set of frequency 
samples, H(k) for k e D, can be determined from the inverse discrete Fourier 
transform (IDFT), 

1 N - 1  .2zr kn 
h (n ) -  -~ E H(k)eJ-N- , ( 1 ) 

k=0 
and the set of frequency samples, H(k) for k ~ D, can be determined from the 
filter's impulse response by the discrete Fourier transform (DFT), 

N - 1  .2~r 

x",2_, h(n)e-J-N -kn . ( 2 ) H(k) 
n=0 

If we let H(z) represent the z transform of h(n), then the system function, 
H(z), of the filter which interpolates a frequency response through the set of 
frequency samples, H(k) for k e D, is 

1. H(k) represents the system function, H(z), evaluated at z - e j(2n/N)k. Al- 
though this notation is a mathematical faux pas, it is commonly used 
throughout the literature and this chapter. 



166 PETER A. STUBBERUD AND CORNELIUS T. LEONDES 

N - 1  

. ( z )  = ~ h(.)z -n = ~ h(.)z -n ( 3 ) 

n=-oo n=O 

By substituting Equation ( 1 ) into Equation ( 3 ), interchanging the order of 
summation and summing over the n index, H(z) becomes 

~ r  N - 1  
H(z) = H(k) ( 4 ) 

k~O " 27r k 1 N = 1 - eJ-U - z -  
Equation ( 4 ) has the form of the Lagrange interpolating formula. The 
complex function, H(z), interpolates a polynomial through the set of points 
H(k) for k e D when z = e j(2r~/N)k for k e D so that 

H(Z)lz=eJ(2n/ N)k = H(k)  
Thus as desired, the frequency response passes through the set of N evenly 
spaced samples. 

Equation ( 4 ) can be expressed in a computationally more efficient form 
if we constrain the filter to have a real impulse response in which case the fre- 
quency response satisfies 

n ( e  j~ ) = -H( e -J  w ) 
where H(e -jc~ is the complex conjugate of H(e-Jr176 This implies that the 
frequency samples, H(k) for k e D, which span the frequency response for 
0 < co < 2rt will have the form 

H ( k ) = H ( N - k )  
where H(N-k) is the complex conjugate of H(N-k). This implies that 

IH(k)l = IH(N - k)l 
and 

O(k) = - O ( N -  k). 
Substituting this frequency response constraint into Equation ( 4 ), H(z) can be 
written as 

1 -  rNz  - N  F H(O) 
H(z) 

N L 1 - rz -1 

N - I  
2 

+2 
k=l 

21~ cos(O,:k,-  k)] 
1 - 2 c o s ( ~ - ~ k ) r z - l + r 2 z  -2 

for N odd and 

l I N 1 rz 1 +  -1 - l + r z  

(5)  

12[n(k)llc~176 2re 

k=l 1 - 2  cos(--~ k ) r z - l  + r2z -2 
( 6 )  



THE DESIGN OF FREQUENCY SAMPLING FILTERS 167 

for N even where r = 1 [4]. Equation ( 5 ) can then be realized by the structure 
shown in Figure 1A where Figure 1B describes the structure of the kth resona- 

tor 2. Equation ( 6 ) can also be realized by the structure in Figure 1 if a 
structure realizing 

-1 l + r z  

Resonator 1 

In + 

r N 

Resonator 2 

Resonator (N- 1 )/2 

H(0)/N ,,"bx Out 

(A) 

-> 

(B) kth Resonator 

2r cos(2~:k/N) [ 

_r 2 

2 IH(k)l cos[O(k)] / N 

z-  1 

I 

I 
-2r IH(k)l cos[0(k) - (2rtk/N)] / N 

I 

Figure 1. Structure for a Type 1 Frequency Sampling Filter with a Real 
Finite Impulse Response of Length N Where N is Odd. 

2. The term resonator is used in this chapter to denote a system which has 

either a single pole or a complex conjugate pair of poles on or near the 
unit circle. 
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is placed in parallel with the resonators. This type of frequency sampling fil- 
ter is called a Type 1 frequency sampl~,g filter. When implementing this fil- 
ter, the zeros created by the term ( l - z " )  exactly cancel the poles in the reso- 
nator sections created by the terms (1-2cos(2zrk/N)z -1 +z -2) for k ~ D. Howev- 

er, when the filter is implemented with finite precision arithmetic, this cancel- 
lation usually does not occur. Therefore to ensure stability, z -1 is replaced by 
rz-1, r < 1 . It shouldbe noted that the frequency sampling filter represented 
by Equations ( 5 ) and ( 6 ) does not necessarily have linear phase. 

B. Type 2 Frequency Sampling Filters 

A second type of frequency sampling filter can be designed by 
interpolating a frequency response through a set of N evenly spaced frequency 
samples starting at o~ - rt/N instead of o~ - 0. This type of frequency sampling 
filter is called a Type 2 frequency sampling filter. 

To develop Type 2 frequency sampling filters, we relate the system func- 
tion and the frequency samples, H(k) for k e D, as follows 

I .2zr 
H(k)=  IH(k)l eJO(k) = H(z) z=eJ-~-(k+2) 

A transformation between H(k) and h(n) can be established by defining a 
modified DFT as 

N-I 2zr(" 1 ] 
H(k) = Z h(n)e-J--N-~k+2vn ( 7 )  

n=0 
and a modified IDFT as 

1 N-1 .2zC('k+2) n h(n) = --~ Z H(k)eJ-N-~, 
k=0 

Using the modified IDFT expression for h(n), the z transform of h(n) can be 
written as 

H(Z)= n=0 k~O H(k)eJ N~k+2 z-n 

Interchanging the order of the summations and performing the summation 
over the n index, yields 

H(z) = 1 + z-._._~ N N-1 H(k) 
Z .2zr - 1  " 

N k=0 1 - eJ-N -(k+l / 2)Z 

Equation ( 8 ) can be expressed in a computationally more efficient form 
if we constrain the filter to have a real impulse response in which case the fre- 
quency response will have the form 

H(e jc~ ) = H( e-J ~176 ) 
Thus, the frequency samples, H(k) for k ~ D, which span the frequency 
response for 0 _< ~ < 2rt will have the form 

n ( k ) = H ( N - l - k ) .  

(8) 
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This implies that 
]H(k)l = IH(N - 1 - k)] 

and 
O(k) = - O ( N -  1 - k). 

Substituting this constraint into Equation ( 8 ), the system function, H(z), for 
Type 2 frequency sampling filters can be written as 

N2~q 2Ill(k) i cos(0(k))- r~: -1 cos O(k)---~- k + 
+ 

k=0 1 - 2 c o s [ ~ - - ~ l k + l ) ] r z - 1  + r 2 z  -2 

for N odd and 

H(z) = 
1 + rNz - N  

N 

( 9 )  

1 21H(k)l cos(O(k))-rz -1 cos O(k) -~- k+ 

( I 0 )  
for N even where r - 1 [4]. When implementing a Type 2 frequency sampling 
filter with finite precision arithmetic, the value of r in Equations ( 9 ) and 
( 10 ) is chosen less than 1 to guarantee stability. Equation ( 10 ) can be 
realized by the structure shown in Figure 2A where Figure 2B shows the real- 
ization of the kth resonator. Equation ( 9 ) can also be realized by the 
structure shown in Figure 2 if a structure realizing 

N 
-1 l + r z  

is placed in parallel with the resonators. Note that the frequency sampling fil- 
ter represented by Equations ( 9 ) and ( 10 ) does not necessarily have linear 
phase. 

C. Computational Advantage of Frequency Sampling Filters 

When most of the frequency sampling filter's frequency samples, the 
H(k)'s, are exactly zero, most of the frequency sampling filter's resonators do 
not need to be realized. Therefore, in the case of a narrow band filter where 
only a small number of the filter's frequency samples are non-zero, the 
resulting structure may require fewer arithmetic operations than the direct 
convolution structure. 

Each of the frequency sampling filters described by Equations ( 5 ), ( 6 ), 
( 9 ) and ( 10 ) requires 4 multiplies and 3 adds per resonator. If only K of the 
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frequency samples are non-zero, then the frequency sampling structure 
requires no more than 4K+ 1 multiplies and 3K+ 1 adds per output sample. If a 
filter with a finite impulse response of length N was implemented using the 
direct convolution method, it would require approximately N/2 multiplies and 
approximately N adds per output sample. Because multiplications typically 
require more time to compute and are more complex to implement than adds, 
a frequency sampling structure becomes computationally more efficient than a 
direct convolution implementation when it uses fewer multiplies. Therefore, 
if we wish to implement a linear phase filter which has an impulse response of 
length of N, a frequency sampling filter described by any of the Equations 
( 5 ), ( 6 ), ( 9 ) or ( 10 ) can be implemented more efficiently (in the sense of 
fewer multiplies) than a direct convolution filter when 4K < N/2 or K < N/8. 

Resonator 0 

In 

(A) 

Resonator 1 

r N ~ Resonator (N/2)-1 
Out 

In 2 IH(k)l cos[0(k)] / N 

-2r IH(k)l cos[0(k)-2rt(k+ 1/2)/N] / N 

_r 2 ] Z-1 ] 

(B) kth Resonator 

Figure 2. Structure for a Type 2 Frequency Sampling Filter with a Real 
Finite Impulse. Response of Length N Where N is Even. 
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III. A Frequency Sampling Filter Design Method Which 
Accounts for Finite Word Length Effects 

In this section, the frequency sampling filter design problem for r < 1 is 
developed as a constrained optimization problem which is solved by the meth- 
od of Lagrange multipliers. 

It was shown in section II of this chapter that a frequency sampling filter 
approximates a desired frequency response by interpolating a frequency 
response through a set of frequency samples. Although the frequency 
response of a frequency sampling filter passes through the frequency samples, 
the frequency response may not be well behaved between the specific 
samples. The design method developed in this chapter controls the 
interpolation errors between frequency samples by minimizing a weighted 
mean square error between the desired and actual frequency responses in the 
stopband and passband subject to passband constraints. 

If we design a linear phase filter which minimizes the mean square error 
between a desired frequency response, Hd(eJ~ and the filter's frequency 

"03 
response, H(eJ ), then the design method would determine the function, 
H(eJ~ so that H(e j~ minimizes the quantity 

A filter's frequency response is generally specified in terms of passband and 
stopband requirements, but the transition band usually has no requirements. 
For these types of filter specifications, the mean square error criterion is over- 
ly restrictive because it requires the mean square error to be minimized in the 
transition band. The transition band error is minimized at the cost of further 
improvement in the filter's passband and stopband performance. Thus, in this 
design technique, the mean square error criterion is not used in the transition 
band. 

For a frequency sampling filter to be computationally efficient, the fre- 
quency samples in the stopband are constrained to be identically zero. Be- 
cause of the large number of these stopband constraints, we are usually pre- 
vented from constraining h(n) - h(N-l-n) for n - 0, 1 ..... N-1, which is the 
necessary and sufficient condition for a FIR filter to have linear phase. To ap- 
proximate linear phase, this design technique minimizes the sum squared error 
of the impulse response symmetry. 

The design method developed in this section determines the optimal co- 
efficients which minimizes a linear combination of the mean square error in 
the stopband and passband, and the sum of square error of the impulse 
response symmetry subject to passband and stopband constraints and a fixed 
value of r < 1. The optimization problem is solved using the Lagrange 
multiplier optimization method which results in a set of linear equations, the 
solution of which determines the filter's coefficients. The design method 
applies to both Type 1 and Type 2 frequency sampling filters. 
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The frequency response of a frequency sampling filter which has a finite 
impulse response, h(n), of length N can be expressed as 

N-1 
H(eJto) = E h(n)e-Jam = hTs(eJto) = sT(ejto)h 

n=0 
where 

/ h(1) e -Jto 

Lh(N'- 1) Le-J(N-l ) toJ  

and the superscript T denotes transpose. 

(11) 

If we let Jsb represent the mean square error over the stopband frequen- 
cies, then 

1 i i, Jsb = ~ H(e jto) - Hd(eJto ) dco 
m(COsb ) toetosb 

where r is the set of stopband frequencies, m(COsb) is the linear measure of 
the set r and Hd(e jc~ is the desired frequency response. Because Hd(e j~ 
is equal to zero in the stopband, Equation ( 12 ) can be written as 

Jsb = H(e jto) d o  ( 13 ) 
m((Osb ) toetosb 

Substituting Equation ( 11 ) into Equation ( 13 ) and restricting h to be real 

1 fto Jsb = ~ hTs(eJto)-s T (eJto)h do) 
m(~176 ) ~tosb 

"CO 
where s(el ) is the complex conjugate of s(eJe~ If we let 
W(e jc~ - s(eJC~ jc~ then 

hTs(eJto)w T (eJto)h = hTW(eJ to )h  
where 

1 e jto e j2to ... e j (N-l ) to  
e - j to 1 ejto ... eJ(N-2)to 

e - j2to e - j to 1 ... e j(N-3)to 

e - j (N-1)to  e - j (N-2) to  e - j (N-3) to  ... 1 
_ 

W(e jto) = 

It can be shown[17] that quadratic expressions of the form h T W(e j~ h can be 
written as 

h T W ( e J ~ ) h = h T I W ( e J ~ 1 7 6 1 7 6  hTIW(eJt~176176 

= hT(W(eJC~176 h 2  

If we define 
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W(e fl~ + WT(e jal ) 
q(CO) : 

2 
then 

hTW(eJ~ = hTq(CO)h 

where q(co) is a symmetric matrix�9 Substituting this expression into Equation 
( 1 3 ) ,  

Jsb = ~ hT f q(CO) dCO h 
m(COsb ) .I,(_0 ~ (_0 s b 

where 

Now let 

then 

q(CO) = 

1 cos(CO) ... c o s [ ( N -  1)CO]] 
/ 

cos(CO) 1 ... c o s [ ( N -  2)09]| 

i i "'. .. 

c o s [ ( N -  1)co] c o s [ ( N -  2)(_o] ..- 1 

Q(co) = fq(co)  dco 

Q(co) = 

co sin(w) 

sin(co) co 

s i n [ ( N -  1)o2] sin[(N 2)o2] 

s i n [ ( N -  1)co] 

N - 1  
s i n [ ( N -  2)(o] 

N - 2  
o � 9 1 4 9  

CO N - 1  N - 2  
_ 

where Q(co) is a symmetric matrix�9 If we let Qic(CO) represent the element in 
the ith row and the cth column of the matrix, Q(co), then Q(o~) can be written 

I 
co i =c 

Qic(co) = s i n ( c -  i)co [ ~ - f i  i:/:c 

a s  

where i, c - 0, 1 . . . . .  N-1. If we define 

=~co q(co) dco 
Qs ~~ 

where Qs is generally calculated by evaluating Q(co) at the appropriate stop- 
band limits, then J sb can be written as 

Jsb = ~ 1  h TQsh 
m(cosb ) 

A desired passband performance can be obtained by minimizing the 
mean square error between the desired and actual amplitudes of the frequency 
responses over the set of passband frequencies, O~pb. To simplify the expres- 
sion for the mean square error over the set, O~pb, we approximate the ampli- 
tude of H(e jc~ by a real function�9 If a FIR filter has linear phase, then its im- 
pulse response will have the form h(n) - h(N-l-n), and 
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H(e jm) = Hr(m)e-J[(N-l)/210 where 

I_ Z 1 )1 2 N - 1  
2h(n)cos co n N even 

Hr (co) = n=0 2 
N-__ll. 1 

~/~; 1) ~ E/~-~ /] 
+ 2h(n)cos co ~ -  n N odd 

n=0 2 

for all m e ~ (real numbers). For our design technique, the passband 
frequency response should have a phase characteristic which is as close as 
possible to ideal linear phase characteristics, that is h(n) = h(N-l-n). Under 
these conditions, the passband of the zero phase frequency response, Hr(m ), of 
the filter can be approximated by 

N_ 1 

2__~02 h(n!+  h_(N2 7-1 - n ) c o s [ c o ( ~ -  n)] N even 

Hr(C~ = I N-1 1 

[~(~/+ ~:o ~ ~~ ,+~  l ~,cosf~ ~ / j ~  N odd 
for m e mpb. If we let 

x ( a ~ )  = 

cos(q~ ~) 
cos(q~ ~) 

then 

, x ( c o )  = 

cos(~ ~) 
- - N odd 

cos(q~ ~)- 
cos(~ ~) 
cos(l =) 
cos(l ~) 

cos(~ ~) 
co~(_~ ~) 

= h  T Hr(Og) x(co) = xT(O~) h 

N even 

( 1 4 )  
for m e mpb. 

If we let Jpb represent the mean square error over the passband frequen- 
cies, then 

1 fro [Hr (~  ) - Hd(OO)]2d~ ( 15 ) Jpb = m((.Opb-------- ~ ~ropb 
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where co ~ is the set of passband frequencies, m(toff).o, is the linear measure of 
h po t e set r and HA(to) is the amplitude of the desired frequency response. 

5uostitutlng Equation ( 14 ) into Equation ( 15 ), Jpb can be written as 

1 I h T f  x(co)xT(co)dco h 
Jpb = m(copb----- 5 ~176176 b 

-2Sc ~176 Hd(co)xT(co) dw h+-~co~COph H~(co)dwl ( 16 ) 

If we let Y(to) - x(to) xT(to), then 

Yic(co)=c~ N - l )  ] 2  co c o s I ( c - ~ N - 1 )  ] 2  co 

where Yic(to) represents the element in the ith row and the cth column of the 
matrix, Y(to). If we let 

Z(CO) = .[ Y(co) do9 

then the element in the ith row and the cth column of the matrix, Z(to) can be 
written as 

co 

Zic(co)= 2 4 i N - 1  
2 

/sin[(i+__c-N+ l~co] sin[(/-c)co] 

2 ( i + c - N + -~ + 2(i -'c-) 
where i, c = 0 1 . . . . .  N-1 for N odd and 

 ;l/o ] 
co m +  

sin[(/+ c - N + 1)co] s in[( /-  c)co] + 
2(i + c -  N + 1) 2 ( i -  c) 

i = c = ~  N - 1  

N - 1  
and i = - c +  N -  1 

otherwise 

i = c and i = - c  + N -  1 

otherwise 

where i, c -- 0, 1 . . . . .  N-1 for N even. If we define 

- Y(CO) dco 
Zp Sco~(Opb 

where Z_o is generally calculated by evaluating Z(to) at the appropriate 
passband limits, then the term 

hrSc ~ x(co)xr (co) dco h 
pb 

in Equation ( 16 ) can be written as 
hTz h. 

P 
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If we also define the following terms 

R T (co) = f Hd(co)x T (co) do) 

j'lHd<O  l 2 

fr Hd(co)xT (oJ) dco R T = eO)p b 

7p = ~w IHd(co)[ 2 do) 
6OO pb 

then Equation ( 16 ) can be written as 

l [hTZph-  2RTh + yp] (17)  J pb = m(co pb--------~ 
If Hd(CO) is equal to a constant in the passband, then without loss of gen- 

erality, we can let Hd(~) - 1, and Equation ( 17 ) becomes 

J pb = m(co pb ) 
where 

If we define 

R(co) = 

then 

leo xT(CO) dco R T = EOlp b 

RT(CO)= f xT(CO) dco 

- ~ _  1 s i n ( - ~  co) 

-~_3 sin(--~---~ co) 

co 

~ s i n ( - ~  co) 

sin(  

2 sin(  

-~_3 s i n ( - ~  co) 

N2--~_ 1 s i n ( - ~  Co) 
N even 

Thus, for filters which approximate constant values in their passbands, Rp can 
be calculated by evaluating R(o) at the appropriate passband limits eliminat- 
ing the need for integrating Hd(03)xT(o~). 

An approximation of a desired passband performance can also be 
obtained by imposing constraints on the amplitude of the passband frequency 
response and its derivatives at particular frequencies. Using the approxima- 
tion of the passband amplitude, Hr(O) - h T x(o) - xT(eo) h, the passband con- 
straints can be written as 
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dHr(W) 
Hr (c~176176 =K00 dw 

60=0) 0 
=K10 

dnHr(CO) 
do9 n 

(.0=(.0 0 

= KnO 

dHr(~) Hr (~176176176 = KOm do~ 

where 

~ = ~ m  
=KI m 

dnHr(Og) 
doo n 

~ = ~ m  

- Knm 

dnHr(OO) 
d(o n 

If we let 

Cp T = Ix(coo) x(o~l) ..- 

and 

dnxT(to) 
~ h .  

dx(oJ) 
do.) 

do) n 

(.o = (o 0 

dnx(o~) 

dco n 
~=Om 

K T = [ K 0 0  K01 ... K 1 0 - . - K n m ] ,  

the passband constraints can be written in the matrix form, 
C h = K .  p p 

Recall that one advantage of the frequency sampling structure is the fact 
that it can be an extremely efficient realization of a FIR filter when most of 
the filter's frequency samples are exactly zero. To set frequency samples in 
the stopband equal to zero for an ideal Type 1 frequency sampling filter with 
r -  1, we would constrain the frequency response to be zero at 03- 2rtk/N 
when k ~ D and 2rtk/N e 03sb" To get frequency samples equal to zero for an 
ideal Type 2 frequency sampling filters with r -  1, we would constrain the 
frequency response to be zero at co-  2r~(k+ 1/2)/N when k E D and 
2~(k+ 1/2)/N ~ 03sb" However, when r < 1, the frequency samples no longer 
correspond to the frequency response evaluated at 03 = 2nk/N for Type 1 
frequency sampling filters and 03- 2rt(k+ 1/2)/N for Type 2 frequency 
sampling filters�9 When r < 1 there exists a different relationship between the 
frequency response and the frequency samples�9 

The frequency response of a frequency sampling filter which has a finite 
impulse response, h(n), of length N can be expressed as 

N-I  
H(efl~ = Z h(n)e-J~ ( 18 ) 

n=0 
When z-1 is replaced by rz -1, the frequency sampling filter is modified by 
moving any unit circle poles and zeros off the unit circle and onto a circle of 
radius r where r < 1. The frequency response, M(eJe~ of this modified 
frequency sampling filter can be calculated by substituting re -jr~ for e -jr176 in 
Equation ( 1 8 ). 
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N-I 
M(eJC~ = E h(n)(re-jw)n 

n=0 
N-I 

= E h(n)rne-JC~ 
n=0 
N-I  

= E m(n)e-JC~ 
n=0 

The impulse response of M(e jm) is m(n) where re(n) = h(n) r n. To compen- 
sate for this effect, h(n) must be premultiplied by the sequence r -n. If we call 
this set of coefficients g(n), then g(n) = h(n) r -n. The frequency samples, 
G(k),,, which correspond to the impulse response g(n) are determined from 
G(eJ") where 

N-I 

( 1 9 )  

G(eJt~ = E g(n)e-JC~ 
( 2 0 )  

n=0 
When these frequency samples are put into the modified frequency sampling 
filter the filter's impulse response will be h(n) and the filter will have the fre- 

"(1) 
quency response, H(eJ ). This can be shown by calculating the frequency 
response of the modified filter when the frequency samples, G(k) k e D, are 
used instead of the H(k)'s. A frequency sampling filter that uses the frequen- 
cy samples, G(k), will have a frequency response given by Equation ( 20 ). If 
the frequency sampling filter is modified by replacing z -1 with rz-I the 

"(1) ~ 
frequency response M(eJ ) of this modified frequency samDlin~ filter can be .' . '_-c0 c o .  ." -' ~ ~ 

calculated by subsntutmg re J for e-J in Equanon( 20 ). 
N-1 

M(eJC~ = Eg(n)(re-Jc~ 
n=0 
N-1 

= E h(n)r-nrne-JC~ 
n=0 
N-I 

= E h(n)e-Jmn 
n=0 

= H(e jc~ ) 
Thus, when the frequency samples, G(k) k E D, are put into the modified 
frequency sampling filter, the filter's im,~ulse response will be h(n) and the 
filter will have frequency response H(eJw). Therefore, to set the frequency 
samples in the stopband to zero, constrain 

G( e j c~ ) co = 2__~z k 
N 

for Type 1 frequency sampling filters and 
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G(eJco)[co=-~(k+�89 = 0  k ~ F F - {k " k ~ D~ 2ZC (k + l )  6 OOsb 

for Type 2 frequency sampling filters. Because G(e jc~ is a complex function, 
each of the stopband constraints will in general require two mathematical 
constraints to maintain h as a real variable. For example, let a Type 1 
frequency sampling filter have the constraint, 

G(eJco )[co=2ZC k 0 = O . 
N 

Therefore, if we specify h to be real, the above constraint requires that 

Re[G(eJco )]lco=2Zr ko =0 
N 

and 

2__ ko 0 
N 

If a constrained frequency sample occurs at 03 = 0 or 03 = 7t, 
o o 

Im[G(eJco)]lco=to,, =0 

G(e 3c~ evaluated at 030 is a real function. Thus, the constraint in because 

Equation ( 21 ) is redundant_ when 030 - 0 or 030 - rc and should be omitted�9 
To describe G(e Jm) in matrix form, we let 

p ~  

1 0 0 - - -  0 

r -1 0 .-. 0 

0 r -2 --- 0 

�9 0 

0 0 0 r - (N- I )  

then 

( 2 1 )  

G(e jco) - h Tps(eJco) = s T (eJco)Ph 

and the stopband constraints can be written in the matrix form 

C s h = 0  
where 
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cs-Im[sT e' ,]qo o P 

The passband and stopband constraints can be combined into a single 

equation and written as 
C h  = K ( 22  ) 

where 

C = and K = . 

If most  of the filter 's frequency samples are exactly zero, the stopband 
constraints will consume most  of the des ign 's  N degrees of freedom provided 
by the variable h because in general each of the frequency samples con- 
strained to zero requires two constraints. As a result, there are not enough 
degrees of  freedom left to constrain h(n) = h(N- 1 -n) for n - 0, 1 . . . . .  N- 1, 
which is the necessary and sufficient condition for an FIR filter to have linear 
phase�9 Instead, we will approximate linear phase by minimizing the sum 
square error of the impulse response symmetry.  If we denote the sum square 

error of  the impulse response symmetry  as Jph' then 

~F_~[h(nl - h ( N -  l - n~] 2 

Jph = -1 

/ EIh(n - 1- 
L n=0 

To express these error terms in matrix form, we let 

1 0 0 0 . . .  0 0 

1 0 0 ..- 0 0 
V ~ o � 9  �9149 �9 . � 9  o" 

0 -.- 1 0 -1 -.. 

for N odd, and 

N odd 

N even 

0 -1 

0 
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W __ 

for  N even�9 Then  

1 0 0 . . . . . .  0 0 - 1  

1 0 . . . . . .  0 - 1  0 
�9 o, �9149 . �9 �9 

0 .. .  1 - 1  -.- 0 0 

Ih(O)- h(N- 1)] 

Vh=lh(1)-h(N-2)[ Lh(2)-h.(N-3)J 
and 

= h r V r V h  

w h e r e  the app rop r i a t e  mat r ix ,  V, ~s 

even .  I f  we  de f ine  

then J ph can  be wr i t ten  as 

w h e r e  

used  d e p e n d i n g  upon  w h e t h e r  N is odd  or  

A = v T v  

= h T A h  % 

for  N odd,  and  

A 

1 0 0 - . .  0 . . .  0 0 - 1  

0 1 0 -.. 0 ..- 0 - 1  0 

0 0 .. .  1 0 - 1  ..- 0 0 

0 0 -.. 0 0 0 .. .  0 0 

0 0 . . . .  1 0 1 .. .  0 0 

0 -1  0 -.- 0 .. .  0 1 0 

- 1  0 0 ..- 0 -.. 0 0 1 

A 

1 0 0 . . . . . .  0 0 - 1  

0 1 0 . . . . . .  0 - 1  0 

�9 ". ". 0 0 .. .. . 

0 .. .  0 1 - 1  0 --- 0 

0 -.. 0 - 1  1 0 . . .  0 

. ." ." 0 0 .. .. . 

0 - 1  0 . . . . . .  0 1 0 

- 1  0 0 . . . . . .  0 0 1 

for  N even .  

A s s u m i n g  that  the n u m b e r  o f  n o n - r e d u n d a n t  cons t r a in t s  in E q u a t i o n  

( 22 ) is less than the n u m b e r  o f  e l e m e n t s  in the v e c t o r  h,  the des ign  p r o b l e m  

can  n o w  be s ta ted as fo l lows .  M i n i m i z e  the e r ro r  func t ion  
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J (h) = ~ p b  + fldsb + (1 - a - fl)Jph ( 23 ) 

where or > 0, 13 > 0 and or + 13 < 1 subject to the constraints 
C h =  K. 

The scalar terms or and 13 in Equation ( 23 ) allow the designer to weight the 
relative importance between the mean square error of the passband amplitude, 
the mean square error in the stopband and the sum square error of the impulse 
response symmetry. 

This problem can be solved using the method of Lagrange multipliers by 
defining a Lagrange multiplier vector as 

~00 

~01 

~" -" ~ ?l m 

~SB~ 
~SB; 

and minimizing the augmented cost function, 

Ja (h, ~.) = Ogpb + fldsb + (1 - a - fl)Jph + ~T (Ch - K). 

Substituting the appropriate expressions for Jpb' Jsb and Jph into Equation 
( 24 ) yields, 

Ja(h ,k)=  a [hTZph_  2RTh + 9,,p ] 
m( fO pb ) 

+ ~ h r Q s  h + (1- a -  fl)hTAh + k r(fh - K )  
m(COsb ) 

The necessary conditions for an optimal solution are 

CgJa(h'~~) = 0 

( 2 4 )  

( 2 5 )  

and 
CgJa (h' ~ ~ ) =  0 ( 26 ) 

Because Zp, Qs and A are symmetric matrices, Equation ( 25 ) becomes 
213 

2o~ [ Z p h -  R p ] +  Q s h + Z ( 1 - a - f l ) A h + C T ~ , = O  ( 2 7 )  
m(OOpb ) m(OOsb ) 

Equation ( 26 ) implies 
0Ja (h, k) 

= C h -  K . =  0 ( 2 8 )  
0K 

Now Equations ( 27 ) and ( 28 ) can be written in the following matrix form 

2a  Zp + Qs + 2(1 - a - f l ) A  C T Rp 
m(OOpb ) m(OOsb ) = m((Opb ) ( 29 ) 

- - 6  . . . . .  I (  . . . .  
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A solution to Equation ( 29 ) will exist when C has full rank which occurs 
when C contains no redundant or trivial constraints. 

When Equation ( 29 ) is solved, the impulse response is available in the 
vector h. Once the impulse response values have been calculated, the 
frequency samples for a Type 1 frequency sampling filter can be calculated 
from the DFT of g(n), 

N-1 .2zr 

H(k) = Z g(n)e-J-N-kn = hTps(eJC~ k 
n=0 N , 

where g(n) - r-nh(n), and the frequency samples for a Type 2 frequency 
sampling filter can be calculated from the modified DFI" of g(n), 

N-I  2Jr( +2In  
H ( k ) -  n=oZg(n)e-JN[k  = hTps(eJC~176 k+ 2 , 

where g(n) = r-nh(n). 

( 3 0 )  

( 3 1 )  

IV. Examples 

A. Example 1. A Type 1 Frequency Sampling Filter for N odd 

In this example, we will design a filter which approximates the frequen- 
cy response, 

i i t  1 Hd(eJC~ = 0 co s <_co<it I ll 
arg Hd(e j(~ ) =-co 

2 

using a Type 1 frequency sampling filter which has an impulse response of 
length N, where N - 101. For this example, we will let m s - 12~/N and 
r - 0 . 9 5 3 1 2 5  -0 .1111012,  and will approximate the passband of IHd(eJ~~ 
with a maximally flat frequency response at co = 0. To attain this type of pass- 
band approximation, we will not minimize the mean square error in the pass- 
band which implies that ~ - 0 and that Equation ( 29 ) can be written as 

rn(COsb) Qs + 2 ( 1 -  fl)A C T _ ( 32 ) 

12 0 �9 

To determine the filter's coefficients, we calculate h from Equation 

( 32 ) where cosb = ~ - cos' Qs - Q(n:) - Q(cos), and the matrix C and the vector 
K are determined from the type of passband approximation desired and 
stopband constraints. The stopband constraints are determined by setting 

G(e jm) = 0 for co - 2~k/N, k - k 0, k0+ 1 ..... (N-1 )/2 where k 0 is chosen so that 
it is the first integer for which 2rck0/N > cos" The passband constraints are 
selected by the type of passband approximation that is desired. In this exam- 
ple, we have decided to approximate the passband with a maximally flat 
frequency response at co - 0. This can be accomplished by constraining 
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Hr(CO)10~__ 0 -- 1 and the first L derivatives of Hr(CO)lor___ 0 to zero. The odd order 
derivatives of a linear phase filter evaluated at CO - 0 are zero, thus constrain- 
ing them is redundant, and they are omitted The even order derivatives 
evaluated at CO - 0 can be expressed as 

dnHr(O))] 
d c~ n o9=0 

- ( -1 )2  ... (-1)2-1 n 0 ( -1 )2  In ... (-1) h 

when n is even. For L - 6, the matrix C can be expressed as 

C i c -  [ (N-I) /2-  m] 2i i - 0 ,  1 , 2 , 3  c = 0 ,  1 ..... N-1 

C ic r -c  cos c-~-  + 4 i=  4, 6 ..... N-9 c = 0, 1 ..... N-1 

_-c  )] 
Cic sin c-~-~-  T + 4 i = 5, 7 ..... N-8 c = 0, 1 ..... N-1 

where Cic is the element in the ith row and the cth column of the matrix C. 

The column vector K is N = [ 1 0 0 "'" 0]. When solved, the solution vector, h, 
of Equation ( 32 ) is substituted into Equation ( 30 ) to determine the filter's 
frequency samples. 

Figure 3A shows the magnitude responses of filters designed for L = 6, 
~ = 0 and 13 = 0.25, 0.9, 0.999. Figure 3B shows the passbands in detail, and 
Figure 4 shows the phase deviations from the ideal phase of-5003. Table 1 
gives the non-zero frequency samples for this example when L = 6, o~ - 0 and 
13 = 0.9. Figure 5A shows the magnitude responses of filters designed for 
o~ = 0, 13 = 0.9 and L = 2, 6, 10. Figure 5B shows the passbands in detail, and 
Figure 6 shows the phase deviations from the ideal phase of-5003. 

B. E x a m p l e  2. A T y p e  1 F r e q u e n c y  S a m p l i n g  F i l t e r  fo r  N o d d  

In this example, we will design a Type 1 frequency sampling filter 
which minimizes the mean square error of the desired frequency response, 

t 409 O<_m_<mp 
= i n-'(~-m ) 

(o s < co < lr 

where COp < COs' and approximates a linear phase filter. We will use a Type 1 
frequency sampling filter which has an impulse response of length N, where N 
is odd. 

To determine the impulse response of the frequency sampling filter, we 
calculate the vector h by solving Equation ( 29 ), 

[2~ 1 Zp + Qs +2(1 -a - f l )A  i CT h 1 Rp 
m(COpb) m(Ogsb) = ) c !--o-] Lkj m(Ogpb 

.... K .... 
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where m(O)pb ) - O)p - O, Zp - Z(O)p) - Z(O), m(COsb ) = n:- o3 s, Qs - Q(rt) - 

f rO p 4(o 
Q(ms) ,K=O,  R T = co=0sin(aco--------~xT(co)dco and 

-20 

.~ -40 

s 

~ -60 

-80 

-100 

13 =0 .25  

13--0.9 

13 - 0.999 

0 0.2n 0.4n 0.6~ 0.8n 

co (radians/sample) 
(A) 

s .% 

-2 

-3 

0.999 

13 = 0.9 ~ ~ =  0.25 

0.01~ 0.02~ 0.03~ 0.04~ 0.05~ 0.06n 0.07~ 

o~ (radians/sample) 
(B) 

Figure 3. Magnitude of Frequency Response for Example 1 where 
N = 101, co s = 12~/N, r = 0.953125, (z = 0 and L = 6. 
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4 

~ 3 

~ 2 

s 0 

, - 2  
8 
w~ -3  ! 

-4 

13 = 0.999 

0 0.02~ 0.04~ 0.06n 0.08~ 0.1 ~ 0.12a 

co (radians/sample) 

Figure 4. Difference Between Ideal Linear Phase of-50co and the 
Phase of the Frequency Response for Example 1 where N = 101, 

co s = 12~/N, r = 0.953125, o~ = 0 and L = 6. 

Table 1 

Non-zero Frequency Samples for Example 1 when L = 6 and 13 = 0.9. 

k IH(k)l O(k) 

0 11.38995857 0 
1 10.68186574 -3.11928414 
2 11.68441972 0.04974796 
3 10.07855019 2.84593402 
4 4.40865063 -0.86062435 
5 0.77142629 1.50833959 
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-20 

~" -40 

s -60 -% 

-80 

-100 
-110 

(A) 

L = 1 0  

L = 6  

L = 2  

0 0.2~ 0.4= 0.6~ 0.8= 

co (radians/sample) 

(B) 

v 

s -1 

=z 

-2 

-3 
0 0.1= 

L - 2  L = 6  L = 1 0  

! 

0.02~ 0.04~ 0.06~ 0.08~ 

(o (radJans/sample) 

Figure 5. Magnitude of the Frequency Response for Example 1 where 
N = 101, m s = 12=/N, r = 0.953125, oc = 0 and 13 = 0.9. 
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4 

3 

2 
0 

- I 

3 0 

,-~ -1 

, - 2  

-3 ! 

-4 
0 

" " L ' - - 6  " " 

0.02rt 0.04rt 0.06rt 0.08rt 0.1 ~ 0.12r~ 

co (radians/sample) 

Figure 6. Difference Between Ideal Linear Phase of-50co and the 
Phase of the Frequency Response for Example 1 where N = 101, 

co s = 12rt/N, r = 0.953125, ot = 0 and 13 = 0.9. 

C ~ 

I co=-~- k 0 
Im[sT (eJ~176 )][ 2rt 

(o=-~k 0 

Re[sT(e Jr~ 2r~(k 
co= u o +l) 

Im[sT (eJ~176 27t 
=-~-(ko +1) 

=~-(ko +M) 

Im[sT (eJC~ )]]co=2_~_(ko +M ) 

The value of k 0 in the matrix C is an integer which is chosen so that the first 
stopband frequency sample, H(k0), is the first frequency sample greater than 
cos" M is chosen so that the last frequency sample, H(k0+M ), is the last stop- 
band frequency sample less than n. Substituting these values into Equation 
( 29 ), we can calculate the vector, h, which contains the impulse response, 
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h(n). Letting g(n) = r-nh(n), we can determine the frequency samples from 
Equation ( 30 ) which is 

N - I  .2zr 

H ( k ) =  Z g ( n ) e - J - N - n k  f o r k = 0 ,  1 ..... (N-l)/2. 

n=0  

or in matrix form, 

hTps(eJ~ k for k = 0, 1 ..... (N-l)/2. 
i 

H(k)  
N 

Figure 7A shows the magnitude of the frequency response for this 
example when N = 75, 03_ = 0.08x, o3s = 0.16rt, r -- 0.953125 - 0.1111012, 
k,~ = 6, k,~+M --- (N-1)/2 --P37 cz = 0.02 and 13 = 0.96. Figure 7B shows in de- 

V V "CO ' 

tail the passband of IH(el )1 shown in Figure 7A. Figure 8 shows the filter's 
phase deviation from the ideal phase of-3703, and Table 2 gives the values of 
the non-zero frequency samples, H(0), H(1) ..... H(5). This filter can be real- 
ized by the Type 1 frequency sampling filter structure illustrated in Figure 1 
where only the resonators for k = 0, 1 ..... 5 are realized. 

C. E x a m p l e  3. A T y p e  2 F r e q u e n c y  S a m p l i n g  F i l t e r  fo r  N e v e n  

For this example, we will design a Type 2 lowpass frequency sampling 
filter which approximates a linear phase filter with the following magnitude 
specification 

i i{lo Hd(e  fl~ ) = 
co s < ro < ~ 

where co < co We will use a Type 2 frequency sampling filter which has an p s" 
impulse response of length N, where N is even. To attain the desired pass- 
band approximation in this example, we will minimize the mean square error 
in the passband while constraining Hr(o3)[o~ 0 = 1 and the first L derivatives of 
Hr(o3)lco___ 0 to zero 

To determine the impulse response of the frequency sampling filter, we 
calculate the vector h by solving Equation ( 29 ), 

Zp+ O r h 1 Rp 
m(Ogpb ) m(COsb ) s = 

e [- -o-.JLi J m(~ 
where m(o3pb ) = o3 0 - 0, m(o3sb ) = rt - co s, Zp = Z(o3p) - Z(0), 
Qs = Q(x) -Z(o3s),'and Rp = R(o3p) - R(0). If L = 4, the passband constraint 
matrix, Cp, can be expressed as 

Cpi c = [(N- 1)/2 - m] 2i i = 0, 1, 2 c = 0, 1 ..... N- 1 

and the stopband constraint matrix, Cs, can be expressed as 
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Figure 7. Magnitude of the Frequency Response for Example 2 where 
N = 75, tOp = 0.08~, tOs = 0.167r, r = 0.953125, oc = 0.02 and 13 = 0.96. 
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e~o 

3 
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oo 

- 1 
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-8 
7~ 
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, - 2  
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Figure 8. Difference Between Ideal Linear Phase of-370) and the 
Phase of the Frequency Response for Example 2 where N = 75. 

Tab le  2 

Non-zero Frequency Samples for Example 2 where N = 75 

k IH(k)l O(k) 

0 6.16144177 0 
1 5.74058525 -3.11655094 
2 6.46345261 0.20005815 
3 7.43710583 -3.10480369 
4 4.66398723 -0.33715578 
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Re[sT(eJC~ ) 
Im[sT(eJ~176 ) 

C s =  i P 

Re[sT(eJC~ ) 
Im[sT(eJW)]lco=2n,(ko+l/2+M) N 

The value of k 0 in the matrix C is an integer which is chosen so that the first 
stopband frequency sample, H(k0), is the first frequency sample greater than 
co s. M is chosen so that the last stopband frequency sample, H(k0+M), is the 
last frequency sample less than ft. Substituting these values into Equation 
( 29 ), we can calculate the vector, h, which contains the impulse response, 
h(n). Letting g(n) - r-nh(n), we can determine the frequency samples from 
Equation ( 31 ) which is 

N - I  2zr 

H ( k ) =  "- 'Zg(n)e-J-N-(k+l/2)n f o r k = 0 ,  1 ..... N/2-  1 

n=0 

or in matrix form, 

H(k) = hrPs(eJ~ I for k = 0, 1 N/2-  1 

I 

co= (k+l! 2) . . . . . .  
1 u  

Figure 9A shows the magnitude of the frequency response for this 
example when N = 100, co = 0.07rt, co = 0.13rt, r = 0.953125 = 0.1111012, 
k 0 = 6, k0+M = N/2 - 1 = ]~9, ot = 0.00~ and 13 = 0.99. Figure 9B shows in de- 
tail the passband of IH(eJm)l shown in Figure 9A. Figure 10 shows the filter's 
phase deviation from the ideal phase of-9903/2, and Table 3 gives the values 
of the non-zero frequency samples, H(0), H(1 ) ..... H(5). This filter can be re- 
alized by the Type 2 frequency sampling filter structure illustrated in Figure 2 
where only the resonators for k = 0, 1 ..... 5 are realized. 

IV. Summary and Conclusions 

In this chapter, we presented a frequency sampling filter design 
technique which accounts for finite word length effects. The design method 
uses the Lagrange multiplier optimization method to design a frequency 
sampling filter which minimizes the mean square error in the stopband, the 
mean square error of the passband amplitude and the sum square error of the 
impulse response symmetry subject to constraints on the passband and stop- 
band and a fixed value of r < 1. As the examples demonstrated, this design 
method is easily adaptable for both Type 1 and Type 2 frequency sampling 
filters, and is well suited for designing narrow band near linear phase 
frequency sampling filters. 
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Figure 10. Difference Between Ideal Linear Phase of-99(0/2 and the 
Phase of the Frequency Response for Example 3 where N = 100. 

Table 3 

Non-zero Frequency Samples for Example 3. 

k IH(k)l O(k) 

0 11.00184860 -1.58770651 
1 10.18982374 1.61629299 
2 11.47032920 -1.41258967 
3 12.00331799 1.47094957 
4 6.82793503 -2.12235917 
5 1.40670737 0.47008988 
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I Introduction 

Typically, the term filter-bank is used to refer to a single-input, multiple- 
output structure, and such structures find use in a wide variety of appli- 
cations such as subband coding [1], frequency domain adaptive filtering 
[2, 3], communication systems, frequency estimation [4], transform compu- 
tations [5], etc. Consequently, a great deal of attention has been focussed 
on their design and properties. Most of these developments, however, do 
not place a great deal of importance on the issues involved in implementing 
the filter-bank, and it is only recently that this aspect has started getting 
some notice [6, 7, 8, 9, 10, 11, 12]. This issue is however no less important, 
because in the complex systems of today, the filtering operation constitutes 
only a small part of the functions of the overall system, and the addition of 
a dedicated DSP or a computer to the system, just for the task of filtering, 
would make its cost, and size prohibitive. One way to solve this problem 
is to take advantage of the advances in VLSI to make application specific 
integrated circuits to implement the filter-bank; hence the entire filter-bank 
could be implemented on a single chip, which occupies very little space, and 
is also relatively cheap. However, this solution makes it necessary to take 
several additional issues into account when designing the filter-bank : if the 
filter-bank is to be amenable to VLSI implementation, it should have a low 
hardware complexity (multipliers and adders), its data flow path should be 
regular, it should have good properties under finite precision arithmetic, it 
should be pipelineable, etc. In this chapter, we will describe a filter-bank 
that has all these properties, and examine some of its applications. 

The applications, and the theoretical aspects presented here are devel- 
oped in the context of the special filter-bank structure described in this 
chapter, rather than as a globally applicable theory that can be applied to 
any filter-bank. Also, applications such as frequency estimation, transform 
computation, etc., have been emphasized, rather than applications such as 
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subband-coding in multirate situations. ( In fact, the problem of applying 
the filter-bank structure in multirate situations is still in the research stage.) 
We refer readers more interested in subband-coding applications to [9], 
which contains an excellent review of developments in filter-banks, in the 
context of multirate systems and subband coding. 

A O r g a n i z a t i o n  

This chapter will be organized as follows: In Section. II, the basic filter 
structure is developed, some of its properties are examined, and some use- 
ful transfer functions associated with it, are derived. The filter structure 
has a set of internal nodes, such that the transfer function from the input 
to these nodes, is a set of bandpass transfer functions with non-overlapping 
center frequencies. Hence, by taking the outputs from these internal nodes, 
the structure may be used as a filter-bank. In Section. III, the first ap- 
plication of the filter-bank is examined. In this application the filter is 
used as an adaptive line enhancer, for the application of sinusoidal fre- 
quency estimation and enhancement. The developed line enhancer has the 
good properties of linear hardware complexity, and also provides improved 
convergence properties, as compared to most other IIR adaptive filters. 
In Section. IV, the filter-bank structure is used to compute trigonometric 
transforms, such as the DFT, DCT, DST, etc., in a time-recursive manner. 
This structure has the advantages of linear complexity and amenability 
to VLSI implementation, and provides a possible solution to the problem 
of implementing a complete transformer on a single chip. Finally, in Sec- 
tion. V, the filter structure is used to synthesize low complexity filter-banks, 
related to "Lerner" filters, that exhibit very good magnitude and phase re- 
sponse characteristics. Some other applications of these filter-banks are 
also examined. 

II  T h e  basic f i l ter-bank s tructure  

The filter-bank structure described here takes on the form of digital res- 
onators in a feedback loop, and can be arrived at using four separate ap- 
proaches. These approaches actually lead to a single input single out- 
put digital filter structure - the resonator-based digital filter structure 
[13, 14, 15]; however, the structure has a set of internal nodes such that 
the transfer functions from the input to these nodes are a set of bandpass 
transfer functions with different center frequencies. Hence, by taking the 
outputs from these internal nodes, the filter structure can be used as a 
single input multiple output filter-bank. The development and some prop- 
erties of the filter-bank are briefly described next. As this chapter will con- 
cern itself chiefly with applications of the filter-bank, we will only describe 
those properties that are relevant and necessary to these applications. For a 
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Figure 1: (a) Singly terminated L-C ladder. 

more detailed description of the filter properties, we will refer the interested 
reader to [13, 14, 15]. 

A Background 

The first approach leading to the resonator-based filter structure is based 
on [16], where the DFT of an input signal is obtained by matching the input 
signal to the weighted sum of reference oscillator outputs, the weights being 
updated by the LMS algorithm. Drawing on the analysis of [17], [18, 19] 
obtained the transfer function from the input to the i th weighted oscillator 
output, and the form of this transfer function was used to suggest the 
resonator-based filter structure. 

The independent approach of [13, 20], was based on [21], and started 
off with structures to obtain certain transforms of the given signal (such 
as the DFT). A state space model for the signal was assumed, and an 
identity observer [21] was used to reconstruct the states of the model, from 
which the desired transforms of the signal were obtained. As the signal was 
modelled as the sum of the outputs of a bank of resonators, the identity 
observer turned out to have a 'resonator-in-feedback-loop' structure, and 
the potential of this structure for general filtering applications was later 
realized and reported in [13]. 

The third approach is based on a tone-decoder originally used in the 
telecommunications industry [22]. This tone-decoder was an active RC 
realization of the singly-terminated ladder filter shown in Fig. la. A signal- 
flow-graph simulation of this filter is shown in Fig. l b, and is seen to take 
the form of resonators in a feedback loop. The resonator-based filter struc- 
ture may be arrived at by transforming the analog signal-flow-graph to the 
digital domain, using the bilinear transform, and modifying it to eliminate 
delay-free loops. 

The fourth approach is based on using a recursive structure to com- 
pute transforms such as the DFT. The time-recursive computation of trans- 
forms may be done by using an FIR filter-bank [23], and to save hardware, 
these FIR filters can be implemented using frequency-sampling structures 
[24, 25]. Unfortunately, this does not represent a very practical solution be- 
cause frequency-sampling structures are known to have poor finite precision 
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Figure 1" (b) Signal-flow graph of singly terminated L-C ladder. 

properties. Alternatively, a feedback structure may be used to implement 
the transformer (Section IV). This structure may be used to implement any 
transform; however, for trigonometric transforms such as the DFT, DCT, 
DST, etc., it reduces to the resonator-based filter-bank structure. 

B D e v e l o p m e n t  

Our development of the filter-bank structure will follow the third approach 
outlined above. Consider the transfer function from V~, to Ve of Fig. la. 
This transfer function is given by 

V~ R H,(s) = . (I) 
v= R+  

Transforming this analog transfer function into the digital domain, using 
l _ z  - t  

the bilinear transform, s --* i+z- 1, we get 

= 
R 

l - a  L I 1_z -2  
R ~t- E i = O  a+L,C,  a_2(L,C,  -1 L,c,+~ )z-*+z-~ 

1 
--  1 . + . 1  ~ , - a  a - z - .  ' ( 2 )  

L, and ai - 1-a/L.C. with la/I < 1 The form of (2) sug- where Ki = a+L,C,, a+a/L,c,, " 
gests that it might be possible to obtain this transfer function by embedding 
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I biquads, with the transfer functions 

K~ 1 - z  -2 
-R- 1 - 2a~z -x + z -2 ' (3) 

in a feedback loop. However, these second transfer functions have a delay- 
free forward path; hence, the filter structure will have a delay-free loop, 
and thus cannot be implemented. 

It is well known from classical circuit and filter theory [26], that this 
delay-free loop problem arises because the signal-flow-graph of Fig. lb mod- 
els the voltage and current variables of Fig. la, and one way to solve the 
problem is to do the modelling in terms of wave variables. Here however, 
we will get around the delay-free loop problem not by using this technique, 
but by other means. First express the transfer function (3 )  as 

Ki K~ 2a~z - I  - 2z -2 

R { R 1 - 2 a i z  - l + z  -2 " (4) 

Here --~ represents the delay-free part of the biquad transfer function, and 
the second part of the transfer function has no delay-free forward path. 
The transfer function He(z)  may now be written as 

He(z)  = 1 
l - 1  I - 1  I + ~]~=0 --~ + Ei=o ~ 2=,~-~-2~-= 

R 1 - 2 a , z -  1 +'z - :  

C 
= ,-i 2 o , . - ~ - 2 . - ~  ' ( 5 )  

1 + ~ i=0  G, 1-2a,~-1+~-~ 

and G, - K, c _ K, .... are constants. Further, 
R -- R+E z-1 K, 

~=0 

where C = 1 
1 + ~-~'- ~ K_~ 

~--0 R 

0 
Ignoring the scale factor C, the filter structure now takes on the form 

of biquads in a feedback loop as shown in Fig. 2a. The transfer function of 
the i ~h biquad is given by 

2aiz -1 _ 2z-2 
H j ~ , ~ ( z )  - G ,  1 _ 2 a ~ z - ~  + z - 2  " (6) 

It may be seen that the poles of the H1~#(z ) lie on the unit circle, hence, 
it represents a digital resonator, with the resonator frequency, wi, being 
related to a, as a~ = cos(wi). Consequently, the structure takes on the form 
of 1 digital resonators in a feedback loop. As these resonators arise from 
tank circuits of la, they are of second order; however, it is also possible to 
have inductors or capacitors in place of the tank circuits in Fig. la. The 
corresponding resonators now become first order, with their transfer func- 

~-1 ~-1, (These transfer functions tions taking on the forms K, ~ or - K ,  x+z- " 
may also be obtained by substituting ai = +1, and adding an additional 
factor of 0.5 to (6)) .  



202 MUKUND PADMANABHAN AND KEN MARTIN 

v~ 

i~ if~ --- io,., 
Resonator 

#I 

Resonator 

#2 

! /  ,1 Vq!2 ,2 

Resonator 
#t-1 

l 
Vq, l-1 

Figure 2: (a) General form of filter-bank. 

The structure now takes on the form of I digital resonators in a feedback 
loop, with the transfer function of the resonators being given by 

2a~z - 1  _ 2 z - 2  
H / b , , ( z )  - G , p ( a , )  l _ 2a ,  z _ l  + z -  2 , (7) 

where p(a~)  - 0.5 if a~ - ~1, and p(a~)  - 1 otherwise. 
These second order resonators may be implemented by using any biquad 

structure such as the LDI biquad [27], the direct-form biquad, the coupled- 
form biquad, etc 1. The LDI-based and coupled-form based biquads are 
shown in Figs. 2b and 2c respectively, and the overall structure is shown in 
Fig. 3, with LDI-b~ed biquads being used to implement the second order 
resonators. Alternatively, these biquads could be replaced by the structure 
of Fig. 2c to give a coupled-form-based filter-bank structure. Also, in order 
to scale the internal nodes of the filter, the multiplier G~ of ( 7 )  is split 
up into two multipliers, V ~ ,  as shown in Fig. 3. Further, assuming that 
of the I resonators, 12 are biquads, and the remainder l - 12 are first order 
resonators, and using N to denote the order of the filter, we have 

N = 2h + Z - h .  (8) 

In order to motivate the applications of the filter structure, we will 
next look at the transfer functions from the input, ~n ,  to some of its 
internal nodes. For instance, the transfer function from ~,~ to Ve is given 
by ( 5), without the scale factor C, and may be seen to be a transfer 
function with multiple notches, the notch frequencies being the same as the 

I For the best performance [14], the biquad whose resonant frequency is least sensitive 
to coefficient truncation should be used- hence, for low resonant frequencies, LDI biquads 
should be used, for frequencies near ]j/4,  direct-form biquads should be used. 
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Figure 3" Filter-bank Structure. 

resonator frequencies. This transfer function will turn out to motivate the 
development of the adaptive application of the filter-bank. Further, the 
structure also yields multiple bandpass transfer functions from ~,~ to V/b,, 
of Fig. 3. The i th such transfer function is given by 

G~p(a~) 2~'~-~-2z-~ 
1-2d;~-~ +~-~ (9) __ V f b , i  __  

- - - - -  _ 2 a ~ z - l _ 2 z - :  , 

and may be seen to have a value of unity at the frequency of the i *h res- 
onator, and zeros at the frequencies of all other resonators; hence, the trans- 
fer functions Hffb,i(z), i - 0 , . . . ,  l -  1, represent bandpass transfer functions 
with non-overlapping center frequencies. Unfortunately, however, the char- 
acteristics of these bandpass tramsfer functions are not very good, because 
they feature high sidelobes (the main sidelobe is down by only 13 dB, and 
the sidelobes fall off to only around 21 dB), and the filter structure can- 
not be used in this form as a filter-bank. However, by grouping the V/b,i 
appropriately to form composite channels, it turns out to be possible to 
vastly improve the transfer characteristics of the resulting filter-bank. This 
is discussed in Section V. 

Another transfer function of interest is the transfer function from V,,~ 
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to an internal node, Vq,i, of the i th resonator, given by 

G~ i-2='~"+~-~ (i0) 
2a~z - a -2z -=  " 

This output is also shown in Fig. 3, and represents the quadrature outputs 
of the filter-bank; i.e., at the frequency wi, the transfer function H~,i(z ) 
has the same magnitude as H11b#(Z), and exactly 900 phase shift. Note, 
however, that this output is not available for the first order resonators. 

1 Choice of r e sona to r  f requencies  

The question that arises next is" how do we choose the frequencies of the 
resonators? The answer to this question is dependent on the application 
being addressed. For the spectral estimation application, the resonator 
frequencies are actually adapted till they are equal to the frequencies of 
a multi-sinusoidal input. For the application of transform computation or 
subband coding, the resonator frequencies are chosen to lie at the N roots 
of 1 or -1. If the filter structure is used to implement an arbitrary transfer 
function, then the resonator frequencies are determined by the poles of the 
unknown transfer function [13, 14]. 

Further, for all applications other than the last one mentioned above, 
it turns out to be unnecessary to use different Gi for different resonators, 
i.e., Gi = G V i. For this reason, the symbols Gi and G are used 
interchangeably in the following text. 

C I m p l e m e n t a t i o n  i s s u e s  

So far we have developed the structure of the resonator-based filter-bank, 
however, it remains to justify the initial claim that the structure is amenable 
to VLSI implementation. Two of the requirements for VLSI amenability 
are low complexity, and a regular data flow path. From Fig. 3, the filter- 
bank structure can be seen to have a linear hardware complexity, and a 
regular data flow path; hence, both these requirements are met. Further, 
as a VLSI implementation would mean that only a finite number of bits are 
available for representing the coefficients and the internal word storage of 
the filter structure, the behaviour of the filter-bank structure under finite 
precision conditions is also important. 

1 F in i t e  w o r d l e n g t h  effects 

When considering a finite-precision implementation of the filter-structure, 
there are three main issues that need to be considered. The first is that of 
linear stability, i.e., will the quantization of the filter coefficients result in the 
poles of the structure moving outside the unit circle? Secondly, assuming 
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that  the filter remains stable after coefficient quantization, will the actually 
implemented transfer function differ significantly from the desired one ? 
Thirdly, when both the coefficients and internal words are quantized, the 
wordlength quantization introduces nonlinearities into the filter structure, 
that  could lead to the existence of limit cycle oscillations even when the 
filter has zero input; hence, we need to verify that  the filter structure is 
incapable of sustaining such oscillations. 

Let us first consider the issue of linear stability. When considering this 
issue, we will assume infinite internal wordlength, and look at only the 
effects of finite coefficient precision. For the sake of simplicity, we will also 
assume that there are no first order resonators in the loop i.e., I = 12. 

We saw earlier that the transfer function of a second order resonator is 
given by (6) .  Assuming that  after coefficient truncation, the poles of the 
resonators are still retained on the unit circle (this is true if LDI or direct- 
form biquads, rather than the coupled-form biquads are used to implement 
the resonators), the transfer function of the resonator after coefficient quan- 
tization may be written as 

H1~,~(z ) - G 2 a i z - 1  - 2z-2 
I - 2aiz -1 + z -2 " (11) 

The transfer function from V,,~ to Ve is now given by 

V~ 1 
= 2a~-~-2~-2 " (12) H,(z) - V~ 1 + E~_10 a j  1-2ajz-l+~-~ 

Further, from (5),  we know that this transfer function relates, through the 
bilinear transform, to an analog LCR prototype as shown in Fig. la, with 
aj _ L~C~-I and as long as 

-- L~Cj+I ' 

l - 1  

c <1, I%1<1, (13) 
j = 0  

the analog LCR prototype is stable, and as the bilinear transform maps a 
stable analog transfer function to a stable digital transfer function, we can 
conclude that the digital filter structure is stable under finite coefficient 
precision. 

If coupled-form biquads are used to implement the second order res- 
onators in Fig. 3, then assuming magnitude truncation for the coefficients, 
the poles of the resonators are no longer retained on the unit circle after 
coefficient truncation. For this case also, it is possible to show that the 
overall filter structure remains stable (for a proof of this see [14, 15]). 

We will next consider the issue of sensitivity of the transfer function to 
changes in the filter coefficients. The resonator-based filter-structure falls 
under the category of "orthogonal" filter-structures [28], i.e., the transfer 
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functions from the input of the filter to its states are orthonormal.  Further, 
if the output  is taken at Vlb of Fig. 3, the transfer functions from the states 
to the output  are also orthonormal. If the state-space representation of the 
filter structure is 

X ( n  + 1) - A X ( n )  + B V~,.,(n) Vlb(n ) -- C X ( n )  + D V~,.,(n) , (14) 

where A, B, C, and D are respectively N x N ,  N x l ,  l x N ,  and l x l  matr i-  
ces (further, D - 0). Now, the above constraints of or thonormali ty are 
equivalent [29] to stating that  the matr ix  R defined as 

[AB] 
R -  C D ' (15) 

is orthonormal,  i.e., R * R  - IN+i .  From [30], such a network can always 
be related to a doubly terminated analog lossless prototype network. The 
desired transfer function now corresponds to the energy transferred from 
the source to the sink of the analog prototype. From the classical arguments 
of [31], the first order sensitivity of the transfer function, to changes in the 
element values of the prototype, is zero, at the frequencies of max imum 
power transfer in the passband. This low sensitivity property of the analog 
prototype translates into low passband sensitivity of the digtal filter 2. 
Several examples are given to demonstrate this low passband sensitivity in 
[15]. 

Finally, we will briefly mention that  as far as zero input stability under 
finite internal wordlength and finite coefficient precision is concerned, it 
can be shown that  if coupled-form biquads are used, and if magnitude 
truncation is used at the input to the delay elements, then the structure 
will not sustain zero input limit cycles (for a proof of this s tatement,  see 
[15]). Unfortunately, it has not yet been possible to show that  limit cycles 
will be suppressed if other biquad forms such as the LDI and direct-form 
are used (to implement the resonators), though this is conjectured to be 
the case. 

2 P i p e l i n e a b i l i t y  

Another issue of some importance is the pipelineability of the structure. 
From Fig. 3, it is clear that  the critical delay of the filter structure arises 
from the additions that  have to be performed in the feedback path, be- 
cause, before a new data  sample can be processed, the signal Ve should be 

2The reader may be a little confused by this statement, because in Section. II B, 
the filter structure was related to a singly terminated LCR ladder, which is known 
to have poor sensitivity properties. This seeming contradiction may be resolved by 
noting that the manipulation of the signal-flow-graph of the biIinear-transformed filter, 
(to get rid of the delay-free-loop), destroys the 1-1 correspondence between the analog 
singly-terminated ladder and the Final digital filter structure. Hence, the poor sensitivity 
properties of the analog filter are not carried over to the digital domain. 
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computed. And in order to compute V,, all the fedback outputs VI~,i have 
to be added, and then subtracted from Vin. Hence, the rate at which input 
data can be accepted is determined by the time taken to compute l+  1 addi- 
tions, and turns out to be the critical delay of the filter. This critical delay 
is quite large and constrains the maximum clock rate of the system, thus 
making it unsuitable for very high speed applications. For the case where 
the resonator frequencies lie at the roots of 1, or-1, however, this problem 
may be overcome by using transformation techniques, similar to the one 
outlined in [32, 33]. This issue will be discussed further in Section IV. 

III Adaptive Line Enhancement (ALE)t 
We will next look at some of the applications of the filter-bank. A com- 
mon problem that arises in several situations is that of estimating and 
isolating the frequency components of a multi-sinusoidal-input signal, over 
time-varying conditions. One common solution to this problem is the use of 
an Adaptive Line Enhancer (ALE), an adaptive filter which tracks and iso- 
lates the sinusoidal components of the input over time-varying conditions. 
Typically, these ALE's turn out to be notch filters (IIR or FIR), and the 
adaptation process changes the notch frequencies till they are equal to the 
input frequencies, at which point, the error is minimized. Such formulations 
have been done using FIR filters [17, 34], and I Ia  filters [35, 36, 37, 38], 
with the IIR filters providing the advantage of low bias, but having the dis- 
advantage of poor convergence properties (when a gradient-based strategy 
is used for the adaptation). Further, most IIR ALE's have the disadvan- 
tages of large complexity (0(12)), require complicated stability monitoring 
during the adaptation process, and also do not provide enhanced compo- 
nents that are in phase with their corresponding components in the input 
(which could be important for applications such as carrier recovery). 

In this chapter, we will first address the problem of developing an IIR 
ALE that does not have the above-mentioned disadvantages, and still pro- 
vides the advantages associated with IIR ALE's. The ALE is based on the 
filter-bank structure of Fig. 3, and a filter-bank with I second order res- 
onators in a feedback loop can be used to track I or fewer sinusoids in the 
input. In the steady-state, the enhanced and isolated sinusoids are avail- 
able at the Vyb,i outputs. It is also possible to replace the LDI biquads of 
Fig. 3 with other biquad forms such as the direct-form. 

Consider the transfer function He given by (5).  This transfer function 
has zeros at the frequencies of all the resonators, and the adaptive algorithm 
is based on varying the resonator frequencies till they are equal to the 
frequencies of the sinusoidal components of the input. This is equivalent 
to minimizing the energy of the signal Ve. Now, the simplest approach to 

t Figs 4a, 4b, 5, 6, 7a, 7b and 7c of this Section reproduced with permission from 
[4]. 
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doing this is to use a gradient-based adaptive algorithm, i.e., the gradient 
of the error surface (Vt 2) is estimated with respect to the i th resonator 
frequency, and the i th resonator frequency is adapted in a direction opposite 
this gradient. However, this simple solution has problems arising from the 
fact that the adapted filter is an IIR filter. As is well known [39], the error 
surface for IIR filters is invariably multi-modal, and the use of a gradient- 
based strategy could cause the filter to settle in some undesirable local 
minimum. Another disadvantage of using the gradient-based strategy is 
that the generation of the gradient signals requires a complexity of 0(12).  

In order to overcome these problems, a "pseudo-gradient" based adap- 
tive algorithm is introduced next for this specific filter structure. The 
pseudo-gradient based ALE avoids the problems of multi-modality of the 
error surface, and also has the advantage of linear complexity. It also 
provides enhanced components that are in phase with the corresponding 
components in the input. 

A D e v e l o p m e n t  o f  t h e  a d a p t i v e  algorithm 
In the adaptive application, the resonator frequencies are changed by the 
addition of a correcting quantity at every iteration. Now, intuitively, this 
correcting quantity can be expected to have certain properties to ensure 
convergence. Let us assume that we have a single input sinusoid of fre- 
quency win, and that the current resonator frequencies are given by wi. A 
correcting quantity has to be generated for each resonator, so there are a 
total of I correcting quantities. To ensure convergence, we would like the 
i th correcting quantity to have the following properties �9 

i) If w~ < w,, then the frequency of the ita resonator must be 
lowered to bring it closer to win; hence, the correcting quantity 
should be negative. 
ii) If win > wi, then the frequency of the ita resonator must be 
increased to bring it closer to w,,~; hence, the correcting quantity 
should be positive. 
iii) If wi,~ is equal to any one of the resonator frequencies, wj, then 
the correcting quantity should be zero, as the adaptive system is 
already in the desired state. 

Further, the biquad implementations make it possible to change the 
resonator frequency only by changing some coefficient of the biquad, and 
in order to keep the adaptation process as simple as possible, we would like 
to use biquads that have their resonant frequency controlled by a single 
coefficient. This coefficient will henceforth be referred to as ki; for instance, 
for LDI-biquads, k~ = 2 sin(w,/2), and for direct-form biquads, k~ = cos(w~). 
Coupled-form biquads, however, cannot be used in this application because 
they have two coefficients, cos(wi), and sin(w~), that are dependent on the 
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resonant frequency. 

1 T h e  G r a d i e n t  

As mentioned earlier, one possible choice for the i ~h correcting quantity is 
the negative of the gradient of the error power, (112>, with respect to the 
i :h resonator frequency. We will first investigate this choice, and see if it 
satisfies the conditions (16). Now, the power of the error signal is given in 
the frequency domain by 

1/ E[V~] - ~ j  H,(z)He(z-1)V~,. ,(z)V~r,(z-1)z-ldz, (~7) 

where He(z) is the transfer function from the input to the error, and is given 
by (5) .  Instead of differentiating this with respect to the i :h resonator fre- 
quency, wi, we will differentiate this quantity with respect to ai = cos(wi). 
As ai is related to wi in a monotonic fashion, this preserves the validity of 
the correcting quantity. Hence, we have the i ~h component of the gradient 
of the error surface as 

V i  - -  
d 

da E[V}] , (18) 

2,~j u,~(z-~/u,~(z) 

H~(z -~) H.(z /+  H.(z / -z -H.(z-  ) z ~dz. (19) 

Defining a sensitivity transfer function as 

d H.,,(z)- -~ H.(~), (20) 

the expression for the gradient may now be written as 

1/ 2~j v'"(z-~)v'"(z) 
[H.(z)n.,,(z -~) + H.(z-~)H.,,(z)] dz, 

27rj V ' (z)V~"(z-1)z- ldz  ' 

(21) 

(22) 

i.e., the gradient is obtained by correlating the error output and the output 
of the sensitivity filter H,j (z ) .  Hence the adaptive algorithm changes the 
resonator frequencies in a direction opposite the gradient, till the gradient 
eventually goes to zero, i.e., when the correlation between the signal Ve and 
V~,i, the outputs of the 'sensitivity' filters, are all equal to zero. 

Let us now see if the conditions (16)  are satisfied by the gradient Vi. 
Assuming that the amplitude and frequency of the input sinusoid is A, and 
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wi,~, respectively, we can write 

v , ( ~ , . )  = 
A 2 
-~- Re {H;(eJ~,-)H,,,,_.tA",*)} 

A ~ y Re {tt,(z-~)g,,,(z)l~=,,.,. } . (23) 

From (5)  and ( 20), we can write 

H,,i(z) - -2aiAi(z)A,(z)z-X(1 - z-2) , (24) 

where 

A,(z) - 

1 
1 ' 2 a , z '  X + z - a  
l-I 2ajz-l-z -~ " 

1 + ~j=o Gj l=~-~7=r:G:~ 

Also, writing H,(z -1) as A i ( z - 1 ) ( 1 -  2aiz + z2), (23) becomes 

(25) 

- -2Gi 
ae[Ai(z)Ai(z -1) z- l (1  - 2aiz + z 2) 

(1 - z -2) Ai(z)I,=~' ' , , , ]  , 
= -2G~ Re[IA~(e~'~)l~ [2cos(w,~)-  2a,] 2sin(w,n) 

r iA,(r ,(~,,,)], 
= 2G, IA~(~"~'")I~ [2a,-  2r 2~i,,(,,,,,,) 

r + r , , , , , , ) IA,(~'~'")I ,  

(27) 

(2s) 

where A,(z) l~: , ,~ ,~ : IA~(eJ~'~)l e jr Now, IA,(eJ~,-)[ is a positive 
quantity that has zeros at all resonator frequencies except the i *h resonator 
frequency. Further, as cos(wi) - a,, and as cos(win) is a monotonically 
decreasing function in [0, lr], we have 

< 0 , win <wi } 
2 ~ , -  2 cos(~,~)  > 0 , ~ , .  > ~,  . (29) 

- -  0 , 03in - -  Wi 

From (28), the first two terms in the expression for Vi(w) grouped together 
provide the properties that  we would like the correcting quantity to have. 
Further the third term sin(w,,~), is positive for win e [0, ~r]; however, the cos() 
term in (28)  causes the gradient to lose the desired properties. r in 
this last term is given by 

r - win-arctan[ 2Gisin(wi")K]z-1 Win<Wi,  (30) 
1 - ~ j = o  a~ 

_ 

- -  I - 1  
1 - ~ j = 0  Gj 

wi,~ > wi , (31) 
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w h e r e  
I-1 

(32) K- 2 " 
i=0 

When cos(~r/2- win + r is evaluated, it is seen that the quantity 
becomes negative in regions between the resonant frequencies, implying 
that the gradient cannot be used as the correcting quantity. 

A plot of the quantity (28) (as a function of w~,~) is shown in Fig. 4a, 
for a two resonator system with the two resonator frequencies fixed at 
wa = 0.804 Hz, and w2 = 0.1 Hr. It may be seen that the gradient changes 
sign between the two resonator frequencies. 

A further disadvantage of using the true gradient is that a separate 
filter-bank is needed to generate each sensitivity output, so the complexity 
of generating the gradients is 0(12). 

2 The Pseudo-gradlent 

We saw in the last section that the true gradient of the error surface could 
not be used as the correcting quantity because it does not meet the re- 
quirements (16). We also saw that it is the cos() term in (28), that causes 
the true gradient to lose the desired properties. Consequently, if we could 
generate a pseudo-gradient, which retains the first few terms of the true 
gradient, but not the cos() term, then this pseudo-gradient could be used 
as a valid correcting quantity. Now, the true gradient was generated by 
correlating the output of a 'sensitivity' filter, Hsj(z), and the error output, 
V~. It would seem a logical inference that the desired pseudo-gradient could 
also be generated in a similar way, i.e., by correlating the error output with 
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the output of a pseudo-sensitivity filter (to be defined), and it remains now 
to find the transfer function of the pseudo-sensitivity filter. 

By inspection, from (24)  and (28) ,  we can deduce that the transfer 
function of the i th pseudo-sensitivity filter should be 

The correlation between the output of the pseudo-sensitivity filter and the 
error output for the case of a single input sinusoid can now be obtained, as 
in (28), to be 

V~'(w,n) - 2G IA,(eJ~")l 2 [2a~- 2cos(w,n)] 2sin(win), (34) 

which can be seen to satisfy the conditions (16). A further major advantage 
of using this pseudo-gradient is that all the I pseudo-sensitivity outputs are 
available at the internal nodes of the filter structure, consequently, no extra 
hardware is needed to generate the pseudo-gradient. Hence, the complexity 
of the adaptive system is 0(I) ,  as compared to O(l ~) for most other ALE's. 

It actually turns out that there are several possibilities for the i th 
pseudo-sensitivity transfer function, that generate a pseudo-gradient with 
the desirable conditions (16). All these choices yield almost identical per- 
formance in the absence of noise; however, in the presence of noise, their 
performance can be quite different. In order to narrow down our choice of 
the pseudo-gradient, we can now take this factor also into account. 

One of the primary considerations in the noise performance of the ALE 
is the existence of a bias in the final solution. Consider the case of a single 
resonator tracking a single input sinusoid, in white noise. If (33)  is used 
as the pseudo-sensitivity transfer function, then the final converged value 
of the resonator frequency will be different from the frequency of the input 
sinusoid, leading to a bias in the final solution. As this is an undesirable 
characteristic, we would like to find a pseudo-sensitivity transfer function 
that does not have this characteristic. It turns out that such a choice does 
exist, and the transfer function of the pseudo-sensitivity filter is given by 

Hp,,i(z) - - 2 G ,  A i ( z ) z  -1 . (35) 

The form of the pseudo-gradient can now be derived, similar to ( 28), as 

Vf'(w~.)- 2G~ [A~(d~'-)I 2 [2a~- 2cos(w,.)]. (36) 

This quantity satisfies the conditions (16), and it is shown in Section III B 1 
that this choice of Hp,,~(z) produces an unbiased estimate in the presence of 
noise. Further, the pseudo-sensitivity output is obtained simply by scaling 
the lowpass output, Vq,~, of Fig. 3, and does not add to the complexity of 
the system. 

Thus, in adapting the filter, one simply changes the i th resonator fre- 
quency to drive the correlation between the error signal and the i tu lowpass 
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output to zero. This particular pseudo-gradient appears to be very similar 
to the frequency update used in an earlier proposed method for frequency 
estimation [40]. However, the update used here is felt to be more robust 
and less complicated than the method of [40] 3. 

A plot of the pseudo-gradient for a two resonator system is shown in 
Fig. 4b. After the resonators have converged to their steady states, the 
frequency of the input sinusoid may be obtained using the functional rela- 
tionship between the coefficient ki and the resonant frequency of the biquad 
w~. To avoid the computational overhead of evaluating this function, lookup 
tables may be used. A point worth noting is that the relation between ki 
and wi is independent of the other kj and also of G~, the damping of the 
loop. Hence, only one table of values need be maintained which is valid for 
all values of the damping. 

S The work of [40] was based on matching the weighted sum of reference oscillator 
outputs to the input signal, and it was shown in [41] that this approach was equivalent 
to a static filter-bank for fixed resonator frequencies. If the resonator frequencies are 
themselves being adapted, then the weights of the filter have to converge much faster 
than the resonator frequencies themselves, for the equivalence to hold. Assuming that 
this is the case, the signal Im (ym) of [40] corresponds to the pseudo-sensitivity output 
used here. Hence, it would appear that the error signal used to modify the resonator 
frequencies of this filter-bank structure are very similar to the error signal used to adapt 
the resonator frequencies of [40]. However, it should be kept in mind that in [40], both 
the reference frequencies and the weights have to be adapted, and the convergence of 
the system depends on the weights converging to their steady state much faster than the 
reference frequencies. These problems are not present in the adaptive system presented 
here, in fact, there is no need to adapt any weights at all, only the resonator frequencies 
need be adapted. 
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B P r o p e r t i e s  o f  t h e  A L E  

1 Bias  in the  resonator  f requency  

In this section, it is shown that  for the case of a single resonator track- 
ing a single input sinusoid in additive white Gaussian noise, the resonator 
frequency converges to exactly the frequency of the input sinusoid without 
any bias. Assuming the input to be a sinusoid of frequency w~,~ and ampli- 
tude A, and the noise to be additive white Gaussian with variance a 2, the 
correlation between the pseudo-sensitivity output and the error output has 
an additional term due to the noise (cross correlation terms between the 
signal and noise are assumed to be equal to zero because of the assumption 
of whiteness) and now becomes 

- { /0  } V(w, ,~)-  V~'(w~,,,w,,~)+ -~ Re H : ( w ) H p , , l ( w )  do., , 

where Hp,,1 denotes the pseudo-sensitivity filter, V~' () indicates the com- 
ponent of the correlation due to the signal alone, and w~e, indicates the 
frequency of the resonator. (As the resonator is adapting, V~' becomes a 
function of the resonator frequency also.) The resonator now adapts till 
V(w~,~) = 0 and finally settles at a frequency wl such that  

{/0 } V~ ' (w~, w~) - 2a2 Re H ;  ( w ) H p , , , ( w )  dw . (37) 
27r 

Hence, the bias in the steady state solution is given by w i = -  wl. This bias 
may be obtained by evaluating the integral in (37 )  and dividing it by a 
linear approximation to V~'(w) near the resonant frequency [38]. 

By invoking Parsevals theorem in the z domain and the Residue theo- 
rem, we can show that 

2"xj H , ( z - 1 ) H p ~ , ~ ( z ) z - ~ d  z - O . 

Hence, from (37) ,  we have V~' (wx,w,,) - 0. This implies that  wl - wi,~, 
i.e., the resonator frequency in the steady state is exactly equal to the input 
sinusoidal frequency for the case of a single sinusoid. The generalization to 
the multi-sinusoidal case is an area of future research. 

2 S N R  E n h a n c e m e n t  

The SNR enhancement is defined as the ratio of the SNR of the enhanced 
output to the SNR of the input. As the signal part of the enhanced output 
is exactly identical to the signal part of the input, the SNR enhancement 
simply is the ratio of the noise power at the input, to the noise power at the 
enhanced output. For the single sinusoidal case, the transfer function from 
the input of the ALE to the enhanced output (the fed back output) is given 

Subsections III.B, III.B.2, III.C.1-III.C.3 reprinted with permission from IEEE Transactions on 
Circuits and Systems-H, vol. CAS-38, No. 10, pp. 1145-1159, Oct. 1991. �9 1991 IEEE. 
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by H/b,1. Therefore, the noise power at the enhanced output, assuming 
that the input is additive white gaussian noise, is 

net, h 2  __ ~ J  I~fb,l(Z)Hfb ' ( 3 S )  

where a 2 is the power of the input additive white Gaussian noise. Evalu- 
ating the integral for the one-resonator case using the Residue theorem, we 
obtain 

cr ~ G 
- ( 3 9 )  
- -  (1  - G )  ' 

and the SNR enhancement ratio as 

a 2 1 - G 
SNR enh. a~. G - -  G " (40) 

1 - G  

C Simulations of the Adaptive Line Enhancer 

The performance of the ALE is next examined through simulations. The 
filter-bank structure of Fig. 3 was used for these simulations, i.e., LDI 
biquads were used to implement the resonators. The value of G~ was also 
set to the same value for all i. 
S t ab i l i t y  M o n i t o r i n g  : As the adapted filter is an IIR filter, it is 
necessary to monitor its stability during the adaptation process. From 

�9 1 - 1  Section II C 1, the filter-bank is stable if ~'~j=o Gj < 1, and lail < 1. For 
the case of LDI biquads, the condition la~l < 1 translates as 0 < ki < 2, 
where k~ is the actual coefficient used in the biquad. Also, as the Gi are all 
equal to some constant, G, they need to be chosen such that G < 1/l. The 
stabilti check for the filter simply becomes 

0 < k~ < 2 i = 0 , . . . , l -  1. (41) 

Also, the actual pseudo-sensitivity used in the algorithm is a scaled version 
of the pseudo-sensitivity of (35),  and is simply the signal Vps,~ of Fig. 3. 

Comparison of performance of true and pseudo gradients 

Simulations of the performance of a two resonator system, when the true- 
sensitivity and pseudo-sensitivity filters are used, are shown in Fig. 5. The 
simulated system consists of two resonators, one with a resonant frequency 
of 0.1 Hz which is fixed, and with the other resonator adapting to notch 
out an input sinusoid at a frequency of 0.09545. A p value of 0.0001 is 
used to adapt the resonators for both cases, and the damping factor G is 
set equal to 1/12. It can be seen that when the true sensitivities are used, 
convergence is not obtained. 
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2 Bias  in r e s o n a t o r  f r e q u e n c y  

To confirm the derivations made in Sect. 1, a plot of the percentage bias 
in the resonator frequency as obtained from simulations is compared to 
the theoretical value of zero in Fig. 6, for an input SNR of 10 dB and 0 
dB for G = 1/6. The simulated system consists of a single resonator in a 
feedback loop, and the coefficient kl of the resonator is adapted using an 
instantaneous approximation to the gradient as 

where e(n) is the error and Vp,, l(n)is the pseudo-sensitivity output. The 
bias shown in the simulations is seen to be negligibly small, which is in 
accordance with the theory. This condition of zero bias is valid only for 
the case of one resonator tracking a single input frequency; for multiple 
resonators, a bias is expected to exist but as of date, it has not been possible 
to derive theoretical expressions for this general case. 

3 Simulations of the tracking 

Simulations of the performance of the adaptive line enhancer are shown 
next. The resonator coefficients are adapted using the power normalized 
update [38] 

(42) 

where Vp,,i(n) is the i *h pseudo-sensitivity output and e(n) is the error out- 
put. Here, an instantaneous approximation has been used for the pseudo- 
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gradient ,  and the power normal iza t ion  is done in order to speed up conver- 
gence when the resonator  coefficients are far away from their s teady s ta te  
values. 

For the s imulat ions  presented,  G is set equal to 1/121, where I is the 
number  of resonators ,  Pm~n is set equal to 0.002, and to prevent the t racking 
of resonators  f rom being identical,  the # value of the different resonators  
are separa ted  from each other  by 10% of the largest # value. Also, the 
input  signal is normal ized so as to have unit  power. 

The  first example  (see Fig. 7a) shows the convergence of the coefficients 
of a sys tem of three resonators,  with the resonator  frequencies initialized 
at  0.08, 0.10, and 0.12, and the input  being the sum of three sinusoids in 
white noise, with frequencies 0.1, 0.12, and 0.14 respectively, all wi th  an 
SNR of 10 dB. A # value of 0.001 4 is used for the first resonator.  

The  second example  (see Fig. 7b) shows convergence when the resonator  
frequencies are initialized far away from the steady state  values. The  input  
consists of two sinusoids with frequencies 0.125 and 0.13 with an SNR of 
3 dB each. The  resonator  frequencies were initialized at 0.001 and 0.002 
respectively, and  a # value of 0.0001 is used for the first resonator.  

The  third example  (see Fig. 7c) shows convergence when a two-resonator  
sys tem tracks two input  sinusoids with different powers. The  resonator  

4 In the examples presented, the # value was chosen arbitrarily. However, for the one- 
resonator case, it is possible to interpret the tracking loop as a pha~e-locked-loop, with a 
second order loop filter. This should enable the # to be chosen so ~ to obt~n a~ay desired 
transient response. This idea has been used in [42, 14]. However, as the generMization 
for the multiple resonator case is not str&ightforward, it is not clear at this time, how 
the # vMues car~ be chosen in a systematic fashion to get a desired trazmient response. 
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Figure 7: (c) Convergence of a two resonator system for input frequency 
components with different powers. ( @1991 IEEE) 

frequencies are initialized at 0.1 and 0.11, and the input consists of two 
sinusoids with frequencies 0.12 and 0.14 at an SNR of 20 dB and 0 dB 
respectively. This simulation used a # value of 0.001 for the first resonator. 

IV Computat ion  of Transforms 1: 

The next application that we will study is that of computing transforms. 
Transforms are used frequently in coding systems to achieve data com- 
pression [43, I], and also in other applications such as transform domain 
adaptive filtering [2], in order to improve the convergence speed. Now, the 
computation of the transform adds quite a great deal to the cornplcxity of 
the system, and conventionally, this complexity has been minimized by us- 
ing fast algorithms to compute the transform [44, 451 . These fast algorithms 
are typically order recursive; i.e., an N point transform is broken down into 
smaller size transforms in a recursive manner to obtain computational sav- 
ings. Though these fast algorithms do bring down the computational cost 
of the transform, they are unfortunately not very suitable for VLSI im- 
plementation because of the extensive data reordering that is needed to 
implement them. In contrast, tirne-recursive solutions [25, 46, 24, 201,[47 , 
Ch 61 offer better possibilities for VLSI implementation. Here, the input 
data is assumed to arrive sequentially in time, and at any instant, the 

$ Figs. 9, 10, 11, 12 and Tables. 1, 2, 3, 4 of this Section reproduced with permission 
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transform of the last N data samples is available, thus providing a "slid- 
ing" transform of the data. This is equivalent to passing the data through 
an FIR filter-bank, and sampling the outputs of the filter-bank to get the 
transform values. For the case of trigonometric transforms, this FIR filter- 
bank can be implemented with a linear hardware complexity using either a 
frequency-sampling structure, or the resonator-based filter-bank structure. 
Both these solutions are described next; however, due to its poor finite pre- 
cision properties, the frequency-sampling structure is not very suitable for 
VLSI implementation, and the resonator-based filter-bank turns out to be 
the best solution. 

A F i l t e r - b a n k  i n t e r p r e t a t i o n  o f " s l i d i n g "  t r a n s f o r m s  

Consider a transform with the basis matrix 

I ho,0 ""  h0,1v-1 1 
�9 . : 

hN-t,o " "  hN-1,N-1 
with the input data available sequentially in time. A "sliding" transformer 
provides the transform of the last N data samples at any point of time, 
hence it can be thought of as a system that outputs a set of N linear 
combinations of the last N data samples at any point of time. This is 
equivalent to saying that the transform values may be obtained by passing 
the data through a bank of N FIR filters, Hbp,i(z), i = 0 , . . . ,  N - 1, and 
sampling the outputs, V1,i , the filter-bank. Also, the transfer function of 
the i th filter is related to the elements of the i th row of the basis matrix 
[48, 23] in the following manner:  

H ~ p , i ( z )  - h , , N _ l Z  - 1  + . . .  + h i , o z  - N  . (44) 

This set of transfer functions may be implemented with a linear hardware 
complexity, either using a frequency-sampling structure, or using a feedback 
structure, as described in Sections IV B, C. 

B F r e q u e n c y - s a m p l i n g  s t r u c t u r e  

For illustration purposes, we will first start with the DFT. The ( l , m )  ~h 

element of the DFT basis matrix is given by e J ~  -~, l, m - 0 , . . . ,  N -  1. 
Hence, the transfer function, H ~ , p , i ( z ) ,  of (44) ,  becomes 

~, , (N- t) 1 - 2  - N  
- - , 

= [ 1 - z  1 - z i z -  1 ' (45) 

where zi - eJ ~-~, and the properties of geometric series have been used to 
simplify the sum in (45). We now need only one complex multiplier, zi, to 
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implement each channel of the filter-bank; further, as the term 1 - z  -~r is 
common to all the channels, a single block with this transfer function can 
be shared between all the channels. This can be simplified even further if 
the filter-bank outputs were designed to be V1,i + VI,N_i and Vl,i - VI,N_i, 
instead of VI,i and VI,N_i. The transfer function from the input to these 
two outputs now becomes 

1 -  ziz -1 -I- 1 - z~_iz  -1 ' 

2~iz -1 _ 2z-2 
= [ 1 - z - ~ r ] l  2aiz_X + z_ ~ i - - 1 , . . .  [N + I - ' 2 j '  (46) 

IIbp"eN-'(Z)--  [1--Z-N] [ Z'Z-* _ ZN-, z-1 ] 
1-- Z~Z -1 1-- ZN_~Z -1 ' 

2b~z -1 = j [ 1 -  + i -  1 , . . .  i N  + 1 - ' 2 ] '  (47) 

Z, ~-Z N--  2~ri z where ai = ' - -5" -"  = cos(--if), and b~ = -'---~-=-~ = sin(2[. ~ ). The main ~J ~ aw J 

advantage of this implementation is that all the internal arithmetic can be 
carried out in the real domain (assuming real input data), and it is only 
necessary to use complex numbers at the very last stage. The complete 
filter-bank is shown in Fig. 8, with coupled form biquads being used to 
implement the transfer function ( 46, 47). The desired outputs V1,i and 
Vy,g-i can be obtained simply by adding and subtracting VI,i~g_i and 
V1#og_i respectively. 

Hence, the number of multipliers needed to implement the entire filter- 
bank is only 2N, and its data flow path is also very regular. Unfortunately, 
however, these nice features are offset by the poor finite precision behaviour 
of the structure, which makes it unsuitable for VLSI implementation. The 
reasons for this are examined next. 

1 F i n i t e  p rec i s ion  effects 

S t ab i l i t y :  The transfer function of the biquads in ( 46, 47) is seen to 
have its poles on the unit circle; hence it represents a digital resonator, and 
the filter-bank is stable and FIR because this pole is exactly cancelled out 
by a pair of the zeros of the common block 1 - z -~r. Under finite precision 
conditions, the cancellation will not occur, and the filter-bank will have a 
pole on or very close to the unit circle, thus representing a marginally stable 
structure. 

M i n i m a l i t y :  The transfer functions of the different channels of the 
filter-bank are of N th order ( 44); however, there are 2N delays being 
used to implement the filter-bank of Fig. 8. Now under conditions of finite 
internal wordlength, assuming that the quantization is done just before the 
delays, the effect of finite internal wordlength can be modelled by adding a 
white noise source just before the delay elements. The contribution of these 
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noise sources at the output is determined by the transfer function from the 
input of the delay elements, to the output. This transfer function can be 
seen to have its poles on the unit circle; consequently, the additive noise 
due to quantization could get blown up very badly at the output. 

For these reasons, the frequency-sampling structure cannot be used in 
practical situations. However, it does suggest a possible way to obtain 
structures that  do not have the same problems, and have the same hardware 
complexity. These structures make use of a feedback loop to overcome the 
problems mentioned above, and essentially reduce to the resonator-based 
filter-bank structure. 

C Feedback  S t r u c t u r e  

We will next describe a feedback transformer to implement the filter-bank 
of (44) .  The structure contains certain "basis generating" IIR filters and 
a "compensating" filter in a feedback loop, and its capability to perform 
transformations is dependent on choosing the "compensating" filter coeffi- 
cients in such a way that  the overall structure resembles an FIR filter with 
all its poles at 0. The term "basis-generating" is used because the filters 
can be considered as a cascade of an IIR filter, 1 i+z-K ( K is an integer 
that  is dependent on the transform to be implemented), and an FIR filter 
Hbv,i(z); the IIR filter can be thought of as producing an impulse every K 
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Figure 9: Generalized Feedback Transformer Structure. ( (~)1993 IEEE) 

sample periods, that  excites the FIR filter, and the impulse response of the 
filter is hence a periodic sequence related to the i th row of the basis matrix. 

The overall filter structure is shown in Fig. 9, with the filter H l , i ( z  ) 
representing the i ~h "basis-generating" filter, and Vl,i being related to the 
i th output of the filter-bank through a scale factor. The transfer functions 
of H ] , , ( z )  and H e ( z )  are given by 

yj , ,  _ A~p, , (z)  i -  o , . . .  i v -  1 (48) H],~(z)  - V~ - l + nz - K  ' " 

Vie [ h c ' l z - l + ' " + h r  for K < N or (49) H~(~)- ~: = l+~z-~  - ' 
[h~,lz -1  + . . .  + hc ,K_l  z - ( K - l ) ]  

= l+77z -K , for K > N ( ~ i 0 )  

where 77 - 4-1. The following derivations assume that  K < N; they may be 
easily extended to the case where K >  N. The loop gain of the structure 
shown in Fig. 9 is given by 

6 ( ~ ) -  a H~(z)+ ~ Hj,,(~) , 
i=O N[ ] 

= 1 + n~-K ~ ho,j + h~,N-~ ~-J. (51) 
j = l  i=O 
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If we choose the coefficients hc,j and v ~  such tha t  the following condit ions 
are satisfied, 

I h~,~ - - E ~ s  ~ ~,N-~ 
hc,K = 0 -? 

a = Z,"=;' ~,--,, 

j - 1 , . . , N ,  j : / :K  I ' 
(52) 

then the loop gain becomes 

-K 

6 ( z )  - 1 + r/z - K  ' 

and we obtain the transfer function from the input to the error V~, and to 
the fedback signal V! as 

H . ( ~ )  - Y. _ ~ - v ~ ( 1  + ~ - ~ )  (54) 
n .  - 1 + 6(~) - 

6(~) = -n~ -K . (55) ~ d  H ~ ( ~ )  - v j  _ z + 6(z) 

Hence, the overall filter behaves like an FIR filter s . If the basis matrix 
H__ is such that all column sums except the (N - K) tn are equal to zero, 
then from (52), he# - 0, and no compensating filter is required. This 
condition holds true for the basis matrices of transforms such as the DFT 
and the WHT for K - N; however for some special cases such as the DCT 
and DST, even though these conditions do not hold true, we do not need 
to include a separate compensating filter in the feedback loop, as is shown 
later. 

If the input data is available sequentially in time, and if hc,j and ~ are 

chosen as in ( 5 2 ) ,  f rom ( 4 8 )  and ( 5 4 ) ,  V1,i - HI,iH, Vir, - v/'-GHbp,iVi,.,, 
i.e., the transfer function from the input  to the i ~h fil ter-bank output ,  scaled 
by 1 /v /G is equal to Hbp,i, where Hbp,~ is as given in ( 4 4 ) .  The desired 

t r ans format ion  can now be obta ined by scaling the VI,i outputs  by 1/v/-G, 
which due to the finite m e m o r y  of the overall filter, will yield the t ransform 
of the last N da t a  samples.  

5 If the H,f,i(z) axe implemented using N delays, then it is always possible to choose 
the hc,j such that the first two conditions of (52) are satisfied. FUrther, if finite precision 
constrains the actually implemented value of V~ to be equal to "yv/'G, where "y < 1, then 

the transfer function He(z) may be obtained as H,(z) = 7~(l+'Tz-K-~ l+n(l_~2)z_ K . The poles of 
the filter structule may now be seen to be evenly distributed around the unit circle at a 
radius of (1 - .y2)l/K (for infufite precision, -y -- 1, and the poles are all at 0). Hence, 
the filter remains stable even if finite precision is used to represent V~. 
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1 D F T  

From (44) ,  a n d ( 4 8 ) ,  

1 - Z - N  z~z  - I  
H. f , i (z )  - 1 + r]z-:': 1 - z~z  - I  z i - w ~ v  i - 0 , - . - , N - l .  (56) 

Now, if we choose r/ = - 1 ,  and K = N, the expression for the H l , i ( z  ) 
Z : Z  - 1  

becomes 1-z:~:~, and this may be implemented with a single delay, and 

the overall structure with a canonical number (N) of delays. Further, all 
column sums of the DFT matr ix except the first are seen to sum to zero, 
hence no compensating filter is needed, and we only need to choose v ~  = 

1 to obtain FIR behavior. These conditions are summarized in Table 1, v ~ '  
and it is seen that  the filter structure reduces to the structure of [20]. 
Further, if the i th and ( N  - i) th complex first order resonators are grouped 
together, the structure takes on the form of 12 real second order resonators, 
and one or two real first order resonators in a feedback loop. The transfer 
function of these resonators is the same as ( 6), with Gi = 1 / N ,  and 
a i  - -  COS( 2~ri --g-). This structure is now seen to be the same as the resonator- 
based structure of Fig. 3, with the resonator frequencies being the N roots 
of unity. Further, for this special choice of resonator frequencies, and G, 
we h~tve 

Ve - H,(z)Vi , . ,  - v/-G[1- z-N]Vi, . ,  , 
z i z  -1 zN_~z  -1  ] 

Vyb,i -- Ve 1 -  z i z  -1  + 1 - -  z N _ i z  -x  
21ri - 1  - 2  

_ v/--~[ 1 _ z_N] 2 c o s (  ) z  --  2z 
I - 2 cos( -N'-2'~i )z - + z - 1  2 

z i z -  1 z~v_iz  -1  ] 
Vq,~ - lie 1 - z~z -1  - 1 - z N _ i z  -1  

2 sin( 2.i ) z -  1 
v'-611 ] W- V,,~ z-N  1 - 

-if- - + z  

(sT) 

I N  - 1 ]59) i -  1 , . . . ,  2 

Hence, Vyb,i gives the sum of the desired outputs V~p,i, and V b v , N - i ,  and 
Vq,i equals their difference. The desired quantities can now be obtained by 

taking the sum and difference of V1~,i/v/"G and Vq,i/v/-G respectively. 
We will next consider a related structure that  will be useful in the 

following sections. A related basis matrix may be defined whose elements 

(2z+1),~ ~. The filter-bank associated with this basis matrix are given by WzN 
, i  

takes exactly the same form as the DFT based structure, with the difference 
that  77 - 1 and the zi are now given by " 2i+1 The corresponding transfer , w 2 N  �9 
functions for this structure become 

v ,  - n , ( . ) v , .  - v ' -611 + (60) 
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Table 1: DFT based Fil ter-Bank ( (~)1993 IEEE) 

DFT 7 = - 1 ,  K = N  

Z;Z -1 
H 1 , ~ ( z  ) - :_~:~_, 

�9 2 1 r  

i = O , . . . , N - 1  
hc,j = 0 

1 
, / G  - 7"~ 

j = z , . . . , N - :  

vj,,, r  + z-"] 2c~ 2~-' - y , . ,  (6:) 
1 - 2 cos( ~(2~+a) )z -1 + z -2 

Vq,~ v/'G[1 + z -N] 2 sin(~(2N+l))z-: 
= V~,~, (62) 

1 - 2 cos(~(2~+:))z -1 + z -2 

i - l , . . . ,  -~ + 1 .  

D Feedback  T r a n s f o r m e r  for genera l  T r i g o n o m e t r i c  Trans-  
f o r m s -  N o n - m i n i m a l  I m p l e m e n t a t i o n  

Under the category of general tr igonometric transforms, we group the var- 
ious forms of the DCT and the DST [46]. 

Consider the DCT basis mat r ix  proposed in [43] (DCT-II of [46]) whose 
elements are given by 

kz~o~ z ( m + 5 ) ~  ' 

1 
where kz = 1 l ~ 0, N lc0 : k N  - "  

The H!,i(z ) for this case can be derived to be 

1, m =  O , . . . , N -  1. 

Hl,i(z) _ _ ~  ki [ z - : ( 1 -  -- 2 ~o~(wiiz -2i + z -2 [ z-N + 71z-K (63) 

~ i -  0 . . .  N -  1 This basis matr ix  does need a c o m -  where wi = ~- , , . 
pensating filter, He(z), to force the feedback transformer to be FIR. If the 
Hl,i(z ) and H~(z) are implemented as a cascade of a N th order transfer 

,-~(:_~-~) 
function ~-N+(_:), and a second order section i-2co,(~,)~-,+z-2, :+n~-K , then the 
transformer could be implemented as shown in Fig. 9, with a non-minimal 

Subsections IV.D, IV.E. 1, and IV.F reprinted with permission from IEEE Transactions on Circuits 
and Systems-H, vol. 40, No. 1, pp. 41-50, Jan. 1993. �9 1993 IEEE. 
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number of delays in the feedback loop. The loop gain is now given by 

6(z) - a ~  - k~ ~- ( 1 -  ~- )~o~(~o~/2) ~ - ~  + (-1) '  
1 -  2cos(wi)z -1 + z -2 1 + r/z -K .= 

h~,lz -1 + . . .  + hc,N_lZ-(N-a) (64) 
+ 1 +~Tz -K  

a l  z - 1  + . . .  + a 3 N z  - 3 N  
= , ( 6 5 )  

(1 + Wz -K)  I'IN=~1(1 -- 2 cos(w,)z- '  + z -2) 

where a l , . . . ,  a3N are some real numbers. The transfer function He(z) now 
becomes 

vfO 
H , ( z )  - 1 + 6(z)  ' (66) 

which reduces to 

J-O(1 + ,z -K) 1-I,"s (1 - 2 ~o~(~,)~-: + ~-~) 
( l+ ,Tz  -K)  N-1 

(67) 
Ideally, of course 6(z) - -'Tz-K 1 - . I+n~_K, and 1+6(z) " -  1 + ,Tz K This implies 

that all the terms ( 1 -  2 cos(wi)z -1 + z -2) in the numerator of (67) ,  which 
represent zeros lying on the unit circle, cancel corresponding terms in the 
denominator. Hence, (67)  has poles as well as zeros on the unit circle, 
which cancel exactly under infinite precision arithmetic, to produce a sta- 
ble FIR transfer function. However, for finite precision, this cancellation 
will not occur, and the structure turns out to have poles very close to, 
or on, the unit circle. Hence, if the feedback loop is implemented with a 
non-minimal number of delays, the structure is as sensitive to coefficient 
truncation effects as the frequency sampling structure. 

E Feedback Transformer for general  Trigonometr ic  Trans- 
f o r m s -  Minimal  I m p l e m e n t a t i o n  

In order to avoid the problems of Section IV B, D, we need to implement 
the feedback transformer using a minimal number of delays. In order to do 
this, we need to separate the Hj,i(z) into two groups, depending on whether 
i is even or odd, and implement each group using a separate filter bank. 
We will refer to these henceforth as the "even" and "odd" filter-banks and 
differentiate between them when necessary by using the superscript "even" 
or "odd" respectively, in all relevant quantities. The even and odd filter- 
banks have 1 -  L - ~ J ,  and I -  L NJ basis generating filters, respectively. 

Consider first the even filter-bank. Choosing K = N and rl = -1 ,  we 
obtain 

H.~. .  ~ ~ .  -N] :o~(~ l~)z -~(  1 - z - ' )  
~,, (z) - k,[1 - z 1 -  2:os(~, )z -~ + z-~ 

2~ri 
" ~ -  N , (68) 
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Figure 10: General form of "even" and "odd" filter-banks of Feedback 
Transformer. ( (~)1993 IEEE) 

-1] 
i -  0, ..., 2 " 

Comparing this with the transfer function from V~,~ to Vf~,~ of the DFT- 
based structure, we see that the two transfer functions differ only in the 
numerator of the biquadratic term, and in the scale factor. The numerator 
in (68)  can be obtained from the DFT-based structure simply by taking 
a linear combination of the internal nodes of the i th biquad. Hence, the 
desired outputs of the "even" filter-bank can be obtained simply from the 
DFT-based structure. Similarly, the modified-DFT based structure can be 
used to produce the outputs of the "odd" filter-bank. 

The even and odd filter-banks now take the form shown in Fig. 10; i.e., 
firs~ or second order resonators in a feedback loop, which represent minimal 
realizations, with the transfer function from V~ to the i th fedback output 
Vfb,i being given by Hy~,i(z) (see (6)) and the transfer function from Ve to 
the output Vf,i being given by tt],i(Z). Also, the final desired outputs can 
be obtained by interlacing, or taking linear combinations of the outputs of 
the two filter-banks as indicated in Tables 2, 3. 

The same procedure as above can be followed for the other forms of 
the DCT and DST, and the relevant quantities and transfer functions, to- 
gether with the definition of the (i, j) th element of the basis matrix, are 
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summarized in Tables 2, 3. For the case of the DCT-III, DST-III, DCT-IV 
and DST-IV it becomes necessary to use complex filters, and consequently, 
the implementation is not as computationally efficient as for the other two 
versions of the DCT and the DST; hence, only the structures corresponding 
to the DCT I-III and DST I-III are described here. In the following, 

k j = l  j r O,N , k 0 = k / v =  
1 

r (69) 

2COS(w,)z_l_2z_2 } 
l_2co$(w,)z_1_l.z_ 2 W, # 0 71" Hfb,,(z)-- co,(~,)z_,__2 ' , i - 0 , - . . , l - 1 ,  (70) 
l_2 'co$(w,)z_X+z_2 O)i - -  0 o r  71" 

- , w , = - N -  "" r] - i  . ( 7 1 )  w i t h  
1 -  1 -  = if 7 / -  1 ' N 

1 Compar i son  with o the r  m e t h o d s  

In general, the computation of block transforms arises in applications such 
as data compression etc. and several efficient algorithms have been de- 
veloped to efficiently compute the DCT or DST of a vector [44, 45, 49]. 
In terms of number of multiplications and additions, these methods are 
more computationally efficient than the transformer presented here ([49] 
needs only 11 multiplications to compute an 8-pt DCT-II); however, the 
transformer does have the merit of being simple, and requires no data 
reordering etc. It also provides a more efficient alternative to compute slid- 
ing transforms for applications such as transform domain adaptive filtering 
[25, 50, 2], as compared to recursive formulae that were developed in [46] 
(see Table 4). Further it also provides a much more robust alternative to 
the frequency sampling like structure developed in [25] because it shows 
very good behavior under finite precision (no stability problems etc), un- 
like the frequency sampling structure, as shown in the next section. Table 4 
indicates the number of multiplications and additions needed to implement 
the filter-bank, and this is also equal to the computations necessary to up- 
date a "sliding" transform ( coupled form biquads (see Fig. 2c) are used to 
implement the Hfb,i(z), and the signal flow graph of the filter-bank for the 
DCT-II, is shown in Fig. 11.) In Table 4, 

k~ ~ 4[L N-1 ~-] 2, J+L J ~4N, 

ks -~ LN ; l j  +L~J ~ g .  
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Table 2: Feedback Transformer (DCT) ( @1993 IEEE) 

Even 

Odd 

D C T -  I 

,,,v,n _ ~ , - 1 ( , -  1_r 
/ ir j , , (~,) = - k, , -2r 
H , ~ r  I~,, ,~)" see (70)  

....... 

o d d  ~ .z-~(z-~,r 
~y,i (z) = ~-2r 

i , j  = O , . . . , N -  1 

~?=-1 K = N  
2,i _~.2j w i = ~  i = o , . . . , L  

77=1 K = N  
.(2,+~) i = o  . . .  L-~-~J ~ i  -- N ' ' 

z,~ I,>- ,o, l ,o> ( ) 
V!  _ ,?,~,n'-- ' ~,2, - ,~., -~ c ~, v ; : : -  i = o , . . . ,  t ~ l  
,, , , o d d  _ . .  LNf= ~,~,+~ = "I,, -crib: i o, ., --J 

Even 

Odd 

D C T -  I I  

, . r  _ ~ r  

. H e v e n / z  :b,i ~ )" see (70) 

odd ~ z-acO,(~,)z-~+z'= HI, , (z) = :~  
B~ ( 70 )  

f b , ,  

, -j,i i =  0, . .  , 

i , j  = O , . . . , N -  1 

r / = - I  K = N  
,,,,= ~ i = 0 , . . . ,  L-~--~J 1 V-O=7 .  ~ 

)7=1 K = N  
,(2i+~) i =  0, L~-~J ~ i  -" N "'') 

V l  b 2i + 1 = V odd , s , ,  i = ~  L-~-~J 
D C T -  I I I  

Even 

Odd 

H:,, (z)= 1 - , , , - I  
e ~ e ~  H:b,, ( z ) =  ..,-1 

i - - Z t Z  - I  

odd V/~ j z , z  -a  S:, ,  ( z ) =  ~_,.,_1 
Hoadtz)  = z , t  - 1  

Jb, ik  1 - z , z - a  

i , j  = O , . . . , N -  1 

~ ? = j  K = N  
z.i = e i , i = O , . . . , N -  i 

1 V'O= 7. ~ 
~ = - j  K = N  

= e~ ~ '~ '>"  j = 0 , . . . ,  N - 1 
1 1 ~ = U ~ '  C = . ~ - I  

I - v , ~ . .  v o - I  _ c v ; f f  ~ =  o , . . . ,  L~-~I  Vt~,2i = ~ - - ' t ~ , N - i  + t,i J 

, , ~  ]-cv;:: " 1 , i + 1  + " l ~ , N - i - 1  . , 
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Even 

Odd 

Tsble 3: Feedback Transformer (DST) ( (~)1993 IEEE) 

D S T  - I 

Hy,i (z) = , - a ~ ( , , , , ) , - . + , - ,  
H ,,~ ,n t - ~,~ ~.)- ~-e (70)  

Hoaa ~ ,in(,.,,),-* 
y,~ (z) = - i -~, : . . ( , , , , ) , - ,+,- : .  

odd By~,,(~)- ,~  (70) 
v~,~, = v/7'" i =  o , . . . ,  L..~-~j 

i,] = 0 , ' " , N -  2 
t?=l  K=N 

,,,~ = "("+~)~ i =  o , . . . ,  tn-~J 
Vrd= ~ r  i =  0 , . . . ,  [-afzj 

t ? = - I  K = N  

:)'('+') i =  0 , ' " ,  t-e~J wi = N 

v'-d = ~ i -  0, . . ,  [af~J 
l ) ' o ~  D~,2,+, = ~., i =  o , . . . ,  LnI-~J 

Even 

Odd 

D S T -  I I  

.,o 

even _ ~ sin(~)z-*(l+z-*) 
Hy,, (~) = k,+l i-ac.,(~,),-,+=-= 

H t ~  e ~  /~,, (~)- ,,, (70) 

H o a d  f f  k 'i'~('~t)* - '  ( I + ' - ' )  
y,, (z) = - V  ~ ,+~ ~-2~0,(,,,.),-,+,-~ 

n;{',(~)-,.~ (70) 

i , j = O , . . . , N -  1 

17=1 K = N  
,,o,+a) i =  0 , . . - t ~ - ! J  

~-- ~ i= o,"',L~J 
1 7 = - 1  K = N  

"('+'> i = o , . . .  Ln-~J tWi --- N 

@i=o, --, = "", l - r - J  
vy~,=, = v;;r'" i =  o, . . . ,  t~J v1~,,,+, = vs 2 i =  o,. , t~-~j 

D S T -  I I I  

Even 

Odd 

{~ sin '-(,+o.s)O+*) 
- 1) k~+l  

J,i (Z) --- i_.i,,_ a 
Heg@n &Iz -I y~,, (z)= ,_,, ,_, 

H o~a %/~N*-* I,, (z) = ~=:_, 

i , j  = O , . . . , N -  1 
, 7 = j  K = N  

(=,- o. s)- 
zi=W " i= O,...,N- I 

1 
V'O = 7. R 

~=-i K = N  
(~,.+O.S),, 

zi = eY , i = O,...,N - I 

Hy~,~(~) = a_,,,_, ~ = V#" ' c - I 
V . _ even ,dd _ - l T t  I~,~, - v i ~ > , - ,  + v~ , + c ,  , ,~ i = o , . . . ,  l ~ - ~ j  

�9 " - "'~'" "~ ~ c~-'v,, i= o,.., L~J vI~,2'+I - -Vl,i+1 - ~Ib N-i-, -r 



LOW-COMPLEXITY FILTER-BANKS 233 

Table 4" Computational Complexity s ( Q1993 IEEE) 

Fil ter  Bank F r o m  [4 6 ] 
M u l t  Add Mul t  Add 

D F T  (N + 2)* (N + log2N + 1)* 
D C T -  I kx + 8 kx + ks + k3 + 5 12N 8N 

. . . . .  

D C T -  I I  kl + k3 -t- 3 kl + ks q- k3 q- 5 6N 6N 
, 

D C T - I I I  ( 2 N + 2 ) * + 2  ( 4 N + 2 1 o g z N + 2 ) "  12N 8N 
D S T  - I kl + 3 kx + ks -I- k3 + 5 

D S T  - 1I  kl + k3 + 3 kl + k~ + k3 + 3 
D S T - I I I  2 ( N + 1 ) * + 2  (4N+21og2N+2)*  

xl. ~ = cos (0~) c~ = 

x2, i = sin (0i) 
O. 

! 2sin (~-) fN 

W �9 

@ 

! L 
_ ~  X]'i X{,i 

2 X2,i 
l w ,  - ~  

fi 

l 
L 

V~,i 

Figure 11: Implementation of either filter-bank of the S-V Structure for 
DCT-II. ( (~)1993 IEEE) 
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F Finite precision effects 

The modularity and linear complexity of the transformer structure make 
it very suitable for implementation using VLSI circuits or DSP's. As the 
internal wordlength and coefficient wordlength used in these cases is finite, 
the study of finite precision effects on this structure is of particular inter- 
est. Recall from Sect. IV. C. 1, that the even and odd filter-bank's take 
the form of the resonator-based filter structure. From the results of Sec- 
tion II, we know that this structure has good finite precision properties i.e., 
if coupled-form biquads (Fig. 2c), or LDI biquads (Fig. 25) or direct-form 
biquads are used to implement the second order resonators, then the filter 
structure remains stable even under coefficient truncation (assuming mag- 
nitude truncation); and for the case of coupled-form biquads, it does not 
even sustain any zero input limit cycles. 

Under similar conditions, the poles of the frequency sampling structure 
also do remain inside the unit circle, however they lie very close to the unit 
circle, as shown below. Also, the frequency sampling structure may sustain 
zero input limit cycles. 

If infinite coefficient wordlength is used for either the generalized trans- 
former, or the frequency-sampling structure, the impulse response of the 
transfer function from the input to V/,~ is FIR, with length equal to N. Un- 
der finite precision however, the poles of either structure move away from 
zero, and the impulse response becomes IIR. The poles of the generalized 
transformer however remain close to zero, while the poles of the frequency 
sampling structure remain close to the unit circle. This is illustrated in 
Fig. 12, where the error in the impulse response of the third channel of the 
"even" filter-bank is shown for the transformer structure and the frequency 
sampling structure corresponding to the DCT-II. This simulation uses a 
value of N equal to 32, and 9 bits (including one sign bit) are used to rep- 
resent the internal coefficients. The error in the impulse response dies away 
to zero much more slowly for the case of the frequency-sampling structure, 
showing that its poles are closer to the unit circle. 

G P i p e l i n e a b i l i t y  o f  T r a n s f o r m e r  S t r u c t u r e  

The final issue to be considered in this application is the pipelineability of 
the transformer structure. We have already seen that the linear complexity 
and good finite precision properties of the structure make it a good can- 
didate for VLSI implementation, however, as explained in Section. II C 2, 
the critical-path delay of the filter-structure constrains its maximum speed 

S The * denotes complex operations.  The coupled form is used to implement  the 
second order H.fb,~(z) and Hl,i(z ), and a tree s t ructure is used to add up all the V fb5 in 
the feedback loop. Also, ss the recursive formulae of [46] require both  the DST and DCT 
to be mainta ined,  and upda ted  in order to compute a sliding transform, the numbers  
shown for [46], corresponding to the DCT-i in the table, refer to the computa t ion  required 
to obtain bo th  the upda t ed  DCT-i and the DST-i values. 
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Figure 12: Error in impulse response of generalized Transformer and Fre- 
quency Sampling Structure. ( Q1993 IEEE) 

of operation, thus making it unsuitable for high-speed image processing 
applications ~. To solve this problem, we will next describe techniques to 
pipeline the filter-structure, and enable it to be used for high-speed appli- 
cations. It is important  to note however, that this pipelining strategy is 
only applicable for the case where the resonator frequencies lie at the N 
roots of 1 or-1.  

As explained in Section. II C 2, the critical delay of the filter structure. 
arises from the additions that  have to be performed in the feedback path. 
Before a new data sample can be processed, the signal Ve (see Fig. 10) 
should be computed. To compute Ve, all the fedback outputs VI~,i have to 
be added, and then subtracted from Via. Hence, the rate at which input 
data can be accepted is determined by the time taken to compute l + 1 
additions, and turns out to be the critical delay of the filter To reduce this 
delay, we make use of transformation techniques similar to the ones outlined 
in [32, 33]. 

Consider making a modification to the filter structure of Fig. 10. As- 
sume that there is a block with the transfer function/r -Jr in cascade with 
all the Hfb#(z) in the feedback loop, where ~ is some scalar to be defined. 

7 Strictly speaking, if A is the delay associated with a single adder, and b represents the 
internal  wordlength,  the delay associated with ridding up these I terms is O ( A . ( b + l o g 2 1 ) )  
[51], r a the r  than  O(A �9 b �9 l). For example,  consider the case where l = 4, and we need 
to compute  si = Vlb,o + V/b,1, s~ = V.fb,2 + V/b,s ,  and  f inal ly sl + s2. It is not necessary 
to wait for the complete  sums sl and s~ to be available before s tar t ing the computa t ion  
sl + s2 ; ra ther  this computa t ion  can s tar t  as soon as the least significant bits of sl and s2 
are available. Hence, the time taken would be only O(A , ( b+ log21) ) .  However, this time 
can be brought  down even fur ther  to just  O(Ab)  by following the pipelining procedures 
outl ined here. 
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The loop gain of the structure now becomes 

-- tcr/z - 2N 
R,~(~ )  - : + ~ z - "  (72)  

and the transfer function from the input to the i th output, Vy,i becomes 

! 

1 + r/z- N Hl, r,,i (z) 
: + r l z -  N _ ,7~ , z_2N l : I j ,~(z )  , = ,  1 + ,Tz - N  --  ~,Tz - 2 N  ' (73) 

t 

where t tbp, i (z  ) represents the transfer function from the input, l,~,~, to V1,i 
! 

of the original structure of Fig. 10 (Hbp, i (z)  is an FIR transfer function). If 
we now cascade a pre-filter before the modified transformer structure with 
the transfer function 

~ % , < , , , ( z )  - : + ~-" - ,~,7~ - ' ~  , (74) 

then the transfer function from the input of the pre-filter to the output, 
I 

VI,~, is given by Hbp,~(z), which is the desired transfer function. 
We now have N additional delays in the feedback loop, and if the signals 

Vfb,~ are added using a tree structure, these delays could be placed after 
each adder in the tree, resulting in the structure of Fig. 13. It may now 
be seen that as far as the computation in the feedback loop is concerned, 
it is only necessary to compute a single addition in a clock period, and not 
l § 1 additions as before. Hence, the critical delay of the filter structure has 
now been reduced to the critical delay of the resonators in the loop, which 
is determined by the biquad structure used to implement the resonators. 

The only remaining point to be considered is the performance of the 
structure under finite precision. It is obvious that the FIR pre-filter is 
being used to cancel the poles of the modified structure. As we cannot rely 
on pole-zero cancellation under finite precision conditions, the structure 
should be such that these poles lie within the unit circle, so that even if 
they are not cancelled out by the pre-filter, it will not result in an unstable 
structure. 

Consider the pre-filter transfer function (74) .  Assuming )7 = -1 ,  we 
have 

H ~ , j , , , ( z )  - (z ~" - ~N + ~ ) z - ~ .  (75) 

Substituting z = z N, this becomes a quadratic equation, and solving for 
the roots of this quadratic, the zeros of the pre-filter may be found to lie at 

rxe j ~  k - 0 , . . . , N - 1  r2e j ~  k - 0 , . . . , N - 1 ,  (76) 

where 

[ ],,N [1 1 + v/1 - 4~ and r2 - . (77) 
r : -  2 2 
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Res #1 
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Figure 13" Modified (Pipelineable) Feedback Transformer Structure. 
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Figure 14" Radius of poles of pipelined transformer as a function of ~. 

The quantities Irll N and It21N are plotted in Fig. 14 for ~ values ranging 
from 0 to 1, and it may be seen that the zeros of the pre-filter, and conse- 
quently, the poles of the pipelined transformer structure lie inside the unit 
circle for this range of values of ~. 

V A " L e r n e r " - b a s e d  m o d i f i c a t i o n  of  the  filter- 

bank 

The final application of the filter structure presented here, is as a multi- 
output filter-bank. Earlier, we saw that the resonator-based filter-structure 
could be used for the application of adaptive filtering, and as a filter-bank 
for the computation of trigonometric transforms. The transfer functions 
from V~,~ to Vfb,i of this filter-bank take on the shape of bandpass filters; 
unfortunately, the characteristics of these bandpass transfer functions are 
not very good. They have quite high sidelobes, and their passbands are 
not very flat, and applications such as frequency-domain adaptive filter- 
ing, subband decomposition systems, etc., usually require a much higher 
suppression of out-of-band energy. To try and meet this requirement, in 
this Section, we will develop a class of filter-banks based on some classi- 
cal 'Lerner' filters. The basic idea is to start with a prototype filter-bank 
with poor characteristics, and then group the channels of this prototype in 
such a manner that the combination of channels has much better character- 
istics. Initially a filter-bank with uniformly spaced channels is developed, 

~ Figs. 16, 17a, and 20 of this Section reproduced with permission from [52]. Figs. 
18a, 18b, and 18c reproduced with permission from [53]. 
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and subsequently, a non-uniform filter-bank is developed by applying an all- 
pass transformation on the uniform filter-bank. Finally, some applications 
of the filter-bank are examined. 

A P r e l i m i n a r i e s  

The resonator-based filter structure, with the resonator frequencies set 
equal to the roots of 1, will be used as the "poor" prototype that starts 
the design process. This also corresponds to the DFT-based transformer 
structure of Section IV, i.e., there are [~9_j resonators in a feedback loop, 
with the transfer function of thr resonators being given by (70). The band- 
pass transfer functions of interest are from the input V~,~ to Vl~,i, denoted 
H]1b,,(z), and from the input V~,~ to Vq,i denoted H I , lq , i (z)  (see Section II). 
Further, given that the resonator frequencies are the roots of unity, it turns 
out to be also possible to develop explicit expressions for these transfer 
functions, which will be used to prove the properties of the filter-bank. 

From (57)  and (58),  we can write 

z, z (78) g b , i ( z ) -  V1b'i N] z iz  1 1 
~ ,  -- [ l - - z -  1- -z iz  -1  § l - z ; z  -1  " 

Now, recognizing the fact that z ~  - z~ N - 1, this might be rewritten as 

H~b,,(z) _ z i z -  1 1 -  z ~ z  - N  , 1 -  z * N z  - N  
1 z iz  1 + z i z  -1  (79) 

- - 1 -  z ~ z  - 1  ' 

* - *N z - N  = ( ~ , + ~ , ) ~  ~ + . . . + ( z , ~ + z ,  ) , 

= 2r  -~ + 2 c o ~ ( 2 ~ ) ~  -~ + . . .  

+2 c o s ( ( N -  1)wi)z  - ( N - l )  + z - N  . 

(80) 

(8~) 

For the first order resonators at dc and .Is/2, the outputs are 

H ~ , o ( ~ ) -  ~-~ + - - .  + z - "  , (82) 

and 
H ~ , , q ~ ( ~ )  - - z  -~  + ~ -~  . . . .  + z - ' ~  , (83) 

respectively. Following the same procedure as for H]lb,{(z), we may write 

v~,, _ (s4)  

2 [sin(w,)z -1 + sin(2w,)z -2 + . . .  § sin((N - 1)wi)z  - ( N - l ) ]  . (85) 

for the second order resonators. Note that the Vq,i output is not available 
for the real first order resonators at dc and fs/2. 
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B Filter-banks with Lerner Weighted Outputs 

The proposed filter-bank takes a linear combination of the resonator out- 
puts Vyb,i or Vq,~ to yield bandpass channels with much better characteris- 
tics [52]. The combination of outputs is similar to what has been used for 
Lerner filters [54]. These filter design methods were originally proposed for 
realizing continuous-time filter-banks having almost linear-phase bandpass 
outputs, with good stopband attenuation. In [54], each bandpass filter was 
realized by a weighted sum of adjacent parallel second order biquadratic 
filters. The weighting coefficients were =hl for adjacent resonators, except 
the bandpass edge biquads, for which i l / 2  was used [55]. The + signs were 
used for all the odd biquads, whereas the - signs were used for all the even 
biquads, or vice versa. These filter realization techniques were extended 
to the digital domain using the matched-z transform [56], and the impulse 
invariant transform [57]. 

1 U n i f o r m  F i l t e r - B a n k  

In the proposed filter-bank, the outputs of adjacent resonators of the proto- 
type filter-bank are added up with alternating signs to realize each Lerner 
bandpass output. The more resonator outputs are included in each filter- 
bank output, the wider the passband will be. Normally, the resonators 
at the passband edges are weighted with a •  rather than a • This 
gives a better transition band performance. In addition, the transition 
band outputs are shared between adjacent channels [55]. For good stop- 
band performance (or equivalently small sidelobes), the total weighting in 
each bandpass output, of all the resonator outputs having even indices must 
equal the total weighting of all the resonator outputs having odd indices. 

Similar ideas of grouping the bandpass channels of a poor prototype 
filter-bank, to get a filter-bank with better characteristics have also been 
explored in [58]. The techniques in [58] formulated the problem as a linear 
program, and solved it to obtain the weighting coefficient for each resonator 
output. In contrast, the Lerner groupings introduced here use a predeter- 
mined weighting strategy, which appears to give quite an acceptable channel 
characteristic, and the additional bonus of linear phase. The magnitude re- 
sponse could perhaps be improved on by using the optimization technique 
of [58], but it is felt that the resulting improvement would be minimal. 

A possible weighting scheme for the Lerner based filter-bank is shown 
in Fig. 15. Note that for this choice of weighting, the first and last Lerner 
outputs of the filter-bank only use two resonator outputs, whereas all other 
Lerner outputs have a weighted sum of three resonator outputs. This is 
because the resonators at dc and f , /2  are only first order resonators, and 
thus an adjacent biquad with a weighting of 1/2 will cancel their sidelobes. 
The characteristics of this Lerner-based filter-bank may be summarized as 
follows: 
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Vlp,16 Vlp,15 Vlp,1 Vlp, O 

Figure 15" Three resonator Lerner groupings. 

(a) The passband is about twice as wide as that of the prototype filter- 
bank, whereas the stopband attenuation is greatly improved, especially as 
one gets further away from the passband. In many practical applications, 
this is preferable to a constant stopband attenuation, This is shown in 
Fig. 16 where Hzp,1 (z) - ~ of Fig. 15, is graphed along with the transfer V~,~ 

function of H~b,2(z ). A flatter passband can be obtained by grouping more 
than three resonator outputs in the manner described above; the larger the 
number of resonators used for the Lerner grouping, the flatter the passband, 
and the larger the passband width. To reduce the passband width, the order 
of the prototype filter-bank could be increased. A doubling of the order 
would result in an equal width passband and a further improved stopband 
at the expense of greater complexity. 

(b) The Lerner grouped bandpass channels also have an additional im- 
portant property. They are all exactly linear phase, and all bandpass chan- 
nels have the same group delay. This can be shown easily as follows. Con- 
sider the simplest kind of Lerner grouping, as in Fig. 15. We now have 

H , ~ , , ( z )  - - 0 . 5 ~ , ~ , _ ~ ( ~ )  + ~ , ~ , ( z )  - 0 . b H ~ , ~ , §  . (86) 

Substituting from (81) into (86), we have 

t tzp,i(z)  - a l z  -1 + . . .  + a N _ l z - ( n - 1 )  , 

where ai - -0.5 cos(w2,_1) + cos(w2~) - 0.5 cos(w2~+l). 
(87) 

(88) 
Now noting that 

r  - 1 ) ~ , ) -  r ~ ( N -  1) - r ~ - r  (89) 
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Figure 16: A Lerner grouped output compared to a single output. ( @1992 
IEEE) 

we have 
a~ = a ~ _ ~  , ( 9 0 )  

in (87). Hence, the impulse response corresponding to the transfer function 
Hzp,/(z) has even symmetry. This implies that Hzp,/(z) has linear phase, 
and a group delay given by z -g /2 .  This group delay depends only on the 
length of the impulse response, and is the same for all channels. 

(c) The filter-bank also provides a very useful quadrature Lerner transfer 
function Hzq,i(z), that has almost the same magnitude characteristic as the 
Lerner bandpass transfer function, and exactly 90 o phase difference at all 
frequencies. This output is obtained by using the same kind of Lerner 
grouping on the Vq,/ outputs of the prototype filter-bank. Hence, 

gtq,i(z) - -0.hH[q,2i_z(z ) + H/q,2/(z ) - 0.hH/q,2/+z(z ) , (91) 

and from (85),  

Hz~,~(z)-  h z  -~ + . . .  + bN_~z - r  , ( 9 2 )  

where bi = -0 .5sin(w2/_z)+ sin(w2/)-  0.5sin(w2/+:). 

Now using the fact that 

sin ((N - 1)w/) = - sin(w/), (93) 

we have 
b / =  -b~r_/ . (94) 
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Figure 17" (a) Magnitude response of H,p,, and Hzq,i. ( (~)1992 IEEE) 

Hence, the impulse response corresponding to the transfer function Hzq,i(z) 
has odd symmetry, and its length is exactly equal to that of Hzp,i(z). This 
implies that Hzq,i(z) are also linear phase filters, with the same group delay 
as Hzp,~(z), but exactly 90 o out of phase. The magnitude characteristic 
of Hzp,l(z) and Hzq,l(z)is shown in Fig. 17a, b for the case where three 
resonator outputs are grouped to form the Lerner outputs. It may be seen 
that the magnitude of the two transfer functions are very similar. 

(d) The sum of the bandpass Lerner outputs is a pure delay (for even N). 
This fact has significance in applications such as analysis-synthesis systems 
for speech [59]. The proof of the allpass property is outlined below. From 
Fig. 15, the sum of the Lerner bandpass outputs is given by 

L~-J 

i = 0  
( 9 5 )  

Now, assuming N to be even, and substituting for H1~,~(z ) from (80), we 
get 

N - 2  

,,, ,v z: _ 

l : = l  i = 1  ~=1 

N 

~=1 

(96) 
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N ~-1 N 

_ , ~ ~ . o ~ , _ ~ ,  E ~ " E ~  ~-~ , 
k = l  i=1  k = l  

N-1 N N 

l= ~ + 1  k = l  k = l  

N-1 N 

i=0 k=l 
N N-1 N N-1 

- k  

k = l  i=O k = l  i=O 

(97) 

(98) 

(99) 

Using the identity 

N - 1  

E eJ2~rk/N -- { 1 if0 elsek-IN} , (100) 

i=0 

we obtain 

Z m,,, - ~-m~. (10z) 
Hence the sum of the Lerner bandpass outputs may be seen to be a pure 
delay. 

2 N o n - U n i f o r m  F i l t e r - B a n k  

The filter-bank described earlier had all its bandpass channels spaced uni- 
formly around the unit circle. However, there are several applications that 
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(@1992 

require the lower frequencies of the input signal to be resolved more accu- 
rately than the higher frequencies. For such applications, a filter-bank with 
non-uniformly spaced center frequencies is required. Rather than start the 
design of such a filter-bank from scratch, an easier alternative is to start 
with the uniform Lerner based filter-bank, which was shown to have good 
characteristics, and convert it to a non-uniform filter-bank by applying an 
allpass transformation [57, 53]. The merit of using such a transformation 
is that it retains the good magnitude characteristics of the bandpass chan- 
nels. This procedure is similar to the one used in [57]; the main difference 
between them is the manner in which the allpass transformation is ap- 
plied. The nature of the prototype filter-bank that we start with precludes 
a straight-forward application of the transformation, as it leads to a delay 
free loop. 

To convert the uniform filter-bank to a non-uniform filter-bank, we use 
the allpass transformation proposed in [57], i.e., 

z+c~ 
z, . (102) l + a z  

Applying the above transformation to each resonator of the prototype filter- 
bank results in the structure of Fig. 18a, where the primes are used to 
denote quantities after the transformation. Now, grouping the fedback 
outputs V;b,~ just as for the uniform filter-bank case, yields the outputs of 
the non-uniform filter-bank V,.,p,i as shown in Fig. 18a. However, the filter 

t 

structure of Fig. 18a is not implementable because the Hlb,~(z), turn out to 
have a delay free forward path. This problem is solved just as in Section II 

I 

(see 3, 4), i.e., the transfer function H1b,i(z ) is expressed as the sum of a 
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p roper  t ransfer  funct ion and a delay free forward  pa th  as 
I I !  

H1b.,(z ) - H]b,,(z ) + g ,  , (103) 

and  the delay-free forward pa ths  of all resonators  are g rouped  toge ther  as 
in Fig. 18b, where 

2aiz -1 2z -2 I !  m 

Hfb,i --  r i  1 -  2aiz - l  + z -2 ' 
1 (1 - a 2) 1 1 - a 2 

r~ = ~ (1 - c~zi)(1 - c~z~' = N 1 + c~ 2 - 23 cos(T-)2'~' ' 

1 [ z ~ - a  z ~ - c , ]  ( l + c ~ 2 ) c o s (  2"~ * - g - ) -  2ex 

a~ 2 1 -- az~ 1 - az~ 1 + a 2 - 2acos(-R-)2~i , 

1 - ~zi 1 - az~ --N 1 + a 2 - 2a cos(T-)2'~i , 

l - 1  ~ N  

K -  E K i -  1 - c~ ~r " 
i=O 

(108) 

Y~ - l ~_ g ~ , , -  H1b.~Y, . 
i=O 

T h e  equa t ion  ( 1 0 9 )  m a y  be re-wri t ten  as 

l - 1  
I I  I I 

V :  - Vi, - E HYb,iV~ - KV~ . (109) 
i=0 

(11o) 

(104) 

(lO5) 

(106) 

(107) 

Cons ide r  now the error signal V~' of Fig. 18b. It may  be expressed as 
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Figure 18" (c) Non-Uniform Filter-Bank without delay-free loop. ( @1992 
IEEE) 

and the equation (110)  may be implemented by a structure of the form 
shown in Fig. 18c. 

The signal V~' of Fig. 18c is exactly the same as that in Fig. 18a; also 
from Fig. 18a and (103),  

I I I  I I 

V]b,i -- H]b,iV , + K,V,  . (111) 

I 

Hence, we may obtain V]b,~ from the structure of Fig. 18c as 

I l l l  I 

- vj ,, + K,v  , (112) 
2 cos( 2,~ ,,, a W-) - 2a , 

= V! b,, + --~ l + a 2 2a cos( 27' V, . (113) 
- --N-- ) 

Subsequently, the V;b,i may be grouped to form the Lerner bandpass out- 
puts V,~p,i. The magnitude response of some channels of the Lerner grouped 
filter-bank before and after the frequency transformation, are shown in 
Fig. 19. Five resonator outputs have been grouped to form the Lerner 
outputs, and a is chosen to be-0.7. 

C H a r d w a r e  C o m p l e x i t y  

The main feature of these filter-banks that makes them desirable is their 
low computational complexity and low sensitivity to coefficient inaccura- 
cies. For the uniform case, the filter-bank requires N / 2  + 1 real multipli- 
ers (complex conjugate resonators are grouped and implemented using a 
single undamped direct-form biquad), and yields N / 4  bandpass channels; 
to obtain their quadrature components, an additional N / 4  multipliers are 
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needed. For the nonuniform case, N + N/4 multipliers are required to gen- 
erate N/4 bandpass outputs, and an additional N/4 multipliers are required 
to generate the quadrature outputs. 

D Applications 

Earlier it was seen that the Lerner bandpass transfer function Hzp,i and the 
quadrature Lerner bandpass transfer function Hzq,i had an almost identi- 
cal magnitude response, and were exactly 90 ~ out of phase over the entire 
band. There are several applications in communication systems, where the 
need to obtain the quadrature component of a signal arises; the Lerner 
based filter-bank is expected to find wide application in such situations, as 
a Hilbert transformer. The situation shown in Fig. 17a corresponded to the 
case where three resonator outputs were grouped to form the bandpass and 
quadrature Lerner outputs, and gave rise to a narrowband Hilbert trans- 
former. In contrast, if more than three resonator outputs are used, then 
a wideband Hilbert transformer can be synthesized, where the passband 
wider, and also flatter. This is shown in Fig. 20, where all the resonator 
outputs except the ones at 0 and fs/2,  have been grouped together. 

In addition to these, the non-uniform filter-bank may be used for equal- 
izing high quality audio signals or music, which require processing in non- 
uniformly spaced frequency bands. It is conjectured that it may also be 
used for subband coding, as the low stopband attenuation would reduce 
aliasing distortion to acceptable levels, though this has not been verified. 
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VI Summary 

In summary, in this chapter 

�9 The motivation for studying and developing low complexity filter-banks 
was given. 

�9 A low complexity resonator-based filter structure was developed, starting 
from an analog prototype circuit, and some of its properties were exam- 
ined. It must be metioned at this stage, that as the main emphasis in 
the chapter is the development of applications for the filter structure, only 
those properties that  are necessary and relevant to these applications were 
described. However, for the interested reader, a more detailed analysis of 
these properties is available in [14, 15, 13]. 

�9 Some applications of the filter structure were then examined. These 
applications are somewhat different from conventional subband-coding ap- 
plication, that  is typically associated with filter-banks. 

�9 The first application examined was that  of adaptive line enhancement; 
an ALE was designed, based on the filter structure, that avoided the con- 
vergence problems typically associated with IIR adaptive filters. It was 
also shown to have the merits of linear complexity, and the capability to 
provide enhanced sinusoidal outputs which were exactly in phase with their 
corresponding components in the input. 

�9 The next application examined was that  of transform computation. The 
filter-structure was used to compute trigonometric transforms such as the 
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DFT, DCT, DST, etc., efficiently, in a time-recursive manner. Its linear 
complexity, good finite precision behaviour, and pipelineability were shown 
to make it a good candidate for VLSI implementation. 

�9 In the final application, the filter-structure was used to synthesize low 
complexity filter-banks with good magnitude and phase properties. The 
design methodology started out with a poor prototype filter-bank, and by 
appropriately grouping the outputs of this prototype, synthesized filter- 
banks with good magnitude and phase properties. Possible applications of 
these filter-banks include their use as Hilbert Transformers, for frequency 
domain filtering, etc. 
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Abstract 

A discrete time transport processor is a discrete time system that is com- 
prised only of delays, adds and subtracts. For example, a linear time invariant 
digital filter whose implementation uses only coefficients of +1, -1 and 0 is a 
discrete time transport processor. This chapter develops a technique for the 
design and implementation of frequency selective linear phase discrete time 
transport processors. This technique determines an optimal integer valued fi- 
nite impulse response and determines a linear time invariant transport proces- 
sor structure that can realize this impulse response. 

I. Introduction 

A discrete time transport processor is a discrete time system that is com- 
prised only of delays, adds and subtracts. For example, a linear time invariant 
digital filter whose implementation uses only coefficients of +1, -1 and 0 is a 
discrete time transport processor. A transport processor is useful for imple- 
menting filters in technologies where multiplies are not economical, not feasi- 
ble or are too slow. For example, the performance of a programmable digital 
signal processing (DSP) chip is generally limited by the performance of the 
chip's multiplier. For high speed real time DSP applications where the 
performance of a programmable DSP chip is not adequate, more expensive 
custom application specific integrated circuits (ASIC's) are used to implement 
these systems. If a programmable digital transport processor chip that con- 
sisted of only registers and adders was available, it could serve as a low cost 
alternative to ASIC's. 
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In this chapter, a technique for the design and implementation of fre- 
quency selective linear phase discrete time transport processors is developed. 
Because a transport processor is comprised only of delays, adds and subtracts, 
its impulse response is constrained to have integer values. The transport pro- 
cessor design technique in this chapter determines an optimal integer valued 
finite impulse response (FIR) and then develops a structure that can realize 
this impulse response. Several methods [1; 2; 3; 4; 51 have been proposed for de- 
termining optimal coefficients for the design of FIR filters with power of two 
coefficients. Several of these techniques use optimization methods to deter- 
mine optimal or near optimal integer impulse responses before scaling them 
into powers of two. The integer impulse responses determined by these meth- 
ods can be used to construct a transport processor. In this chapter, a different 
optimization technique for determining optimal integer finite impulse respons- 
es is developed. This optimization technique determines an optimal integer fi- 
nite impulse response that minimizes a linear combination of the mean square 
error between the desired and actual frequency responses in the passband and 
stopband while bounding the impulse response to a user specified value. 

II. A Technique for Determining Optimal Integer Valued 
Finite Impulse Responses 

If we design a linear phase filter which minimizes the mean square error 
between a desired frequency response, Hd(e/a), and the filter's frequency 
response, H(eJm), then the design method would determine the function, 
H(Jw), that minimizes the quantity, 

H(e jr-~ - Hd(e j(~ dco. 
27c -~ 

A filter's frequency response is generally specified in terms of passband and 
stopband requirements, but the transition band usually has no requirements. 
For these types of filter specifications, this mean square error criterion is over- 
ly restrictive because it requires the mean square error to be minimized over 
the transition band. The transition band error is minimized at the cost of fur- 
ther improvement in the filter's passband and stopband performance. The de- 
sign method.developed in this section determines the optimal frequency re- 
sponse, H(e/~,  which minimizes a linear combination of the mean square 

error in the stopband and passband and does not minimize transition band er- 
rors. 

The frequency response of a discrete time filter which has a finite 
impulse response, h(n), of length N can be expressed as 

N-1 
H(eJ(~ - Z h(n)e-JC~ 

n=0 
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If the filter has linear phase and a real impulse response, then h(n) - h(N-l-n), 
and it can be shown[6] that H(eJ~ can be written as 

H(e jc~ ) - e - J -~o~  Hr(~  ) 
where Hr(CO) is a real function given by 

N - I  
2 

 )cos  p,  odd 
Hr((.o ) _ p=l 

INI2 
] Z 2 h ( N -  p)cos[co(p-  1/2)] Neven 

[ p = l  

Hr(OJ) is often referred to as the amplitude or the zero phase frequency re- 
sponse of H(e#~ If we define 

X = 

2h(l) 

2h(0) 
N odd 

2h( -2) 

2h(l) 

2h(0) 
_ N even 

and 

then 

s ( c o )  = 

1 
cos(~) 

cos(2r.o) 
o 

cos[_  o,] 
N odd 

cos(~o/2) 
cos(3co/2) 
cos(5~o/2) 

cos[  
N even 

Hr(OO ) = x T s(co) = sT(a/) x ( 1 ) 

where the superscript T denotes transpose and the appropriate expressions for 
x and s(to) are used depending upon whether N is odd or even. 

Consider a linear phase FIR filter that has a frequency response, H(e/a~, 
that approximates a desired frequency response, Hd(eJ%. If we let Jpb repre- 

sent the mean square error over the passband frequencies, then 

1 ~(o Hr ((~ do  ( 2 ) 
J pb - m( al pb-------- ~ ~O) pb - T -  

where COpb is the set of passband frequencies, m(tOpb) is the linear measure of 
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the set co, ~,, Ha(oJ) is the amplitude of the desired frequency response, and 13 is 
a var iabl~which scales Hr(og). Substituting Equation ( 1 ) into Equation ( 2 ), 

x Ts(co)s T (co)x dco 

Jpb can be written as 

J pb ( X, fl) _ 1 [ m( CO pb-""'~ fl-2 So)~co pb 

- 2 f l - I  Sc ~ Hd(~)xTs(O9)do9+Sc ~ 
ECO pb E(-O pb 

1 [/3_2xT f s(co)sT (Co)do) x 

re(co pb ) L Jco eco pb 

H~ (o9) do91 

- 2  f l -  l x T Sco6Oo p b Hd(o9)s(o9 ) do9 + Sco~Copb H~(Og) do91 ( 3 ) 

If we define W(og) as the matrix, 

w(co)= s(co) st(co) 
and let Wrc(CO) represent the element in the rth row and the cth column of the 

matrix, W(o9), then 

[cos(rog) cos(co9)] N odd 

cos r - � 8 9  cos c - � 89  N even 

where r, c - 0, 1 . . . . .  (N-1 )/2 when N is odd and r, c - 1 ,2 . . . . .  N/2 when N is 

even. Defining Q(og) as the matrix, 

Q(og) - S W(o9) dog, 

the element in the rth row and the cth column of the matrix, Q(co), can be 

written as 

Qrc ( o9 ) - 

co 

co sin(2ro9) 

2 4r 

sin(r + c)o9 
+ 

sin(r - c)o9 

2(r + c) 2(r - c) 

where r, c = 0, 1 . . . . .  (N-1 )/2 when N is odd and 

r - c - O  
r=c~O 

r , c  
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[co sin[2(r - 1/2)co] 
~ + ---~r -- ; /~2 7---- r - c 

Qrc ( co ) - / s i n ( r  + c -  1)co + s i n ( r -  c)co 
[ - ~ r + c T l i  -~r-c)  r , c  

where r, c = 1,2 . . . . .  N/2 when N is even. Defining 

Q p - ~o) ~_ OJ p b W(co) do) 

where Qp is calculated by evaluating Q(co) at the appropriate limits, the term, 

xTf s(o~)sT(w) dco x, 
aoj EOJ pb 

in Equation ( 3 ) can be written as 

If we also define the terms, 

R(CO) - f Hd (co)s(co) dco 

2 (co) dco 7(CO)- I H d 

x T Q p x  

Rp - f(_oE(_Opb Hd(co)s(co) do/ 

~'p - IogeCopb H2 (co) dco 

2 sin( ) 
sin(co) 

R(CO)- f s(co)dco- I sin.(2co) , 2sin!  3co) 

-~__ 1 s i n ( - ~  c o ) N 2 - N - - ' ~ I  s i n [ (N:-!) co ] 
- -N odd N even 

This expression for R(co) eliminates the need for integrating Hd(CO)s(co) when 
calculating R, .  

If we le[Jsb represent the mean square error over the stopband frequen- 
cies, then 

co 

where 

then Equation ( 3 ) can be written as 

J~x , t~ -~ [ t~ -2xrQpx-  2t~-~xrRr + rp] ~4~ 
m( co pb ) 

For filters which approximate constant values in their passbands, the ex- 
pression for R(co) can be simplified�9 If Hal(co) is equal to a constant in the 
passband, then without loss of generality, we can let Hal(co) = 1, and Equation 
( 3 )becomes 

Jpb(X,~)- 1 [/~_2xrQp x_2~_~ m( co pb--------- S xTRp]  + 1 ( 5 )  
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I - Hd(o))l 2 = I f Hr(o)---------~)) do) ( 6 ) Jsb m(o)sb ) JooEOgsb fl 
where o)sb is the set of stopband frequencies, m(o)sb ) is the linear measure of 
the set o)sb' Hr(O)) is the amplitude of the desired frequency response, and fl is 
a variable which scales Hr(o) ). Because Ha(o) ) equals zero in the stopband, 
Equation ( 6 ) can be written as 

S~ H2 (O)) do) Jsb = m(o)sb-"""" ~ ~C~ 
Substituting Equation ( 1 ) into Equation ( 7 ), 

Jsb(X, fl) = ~  xTs(o))sT(o))x do) 
m(o)sb ) EOJsb 

( 7 )  

t -2 
x T s(o))s T (oJ) do) x 

m(o)sb ) EO)sb 
Recall that earlier, we let W(co) = s(to) sT(o)) and 

t '  
Q(o)) = j w(o)) do). 

Thus, if we define 

Qs = f W(o)) do) 
a(o E(.O sb 

where Qs is calculated by evaluating Q(co) at the appropriate limits, Equation 
( 6 ) can be written as 

13 -2 
Ysb(X, fl) = xTQs x 

m(o)sb ) 
The design problem can now be stated as follows. Minimize the error 

function 

- Oapb(X,/ ) + (1 - a)Jsb(X, ) ( 8 ) 
where 1 < 13 < B, B is a finite real number and 0 < a < 1. Because transport 
processors have integer valued impulse responses, the elements of the vector, 
x, are constrained to be even integers except for the first element of the vector, 
x, when N is odd. When N is odd, the first element of the vector, x, corre- 
sponds to h[(N-l)/2] and therefore can be either an even or odd integer. The 

variable, ,6, scales the amplitude of the filter's passband. By bounding its 
value, the passband amplitude is bounded as well as the values in the filter's 
impulse response. The scalar term, a, which can assume the values 0 < a < 1, 
weights the relative importance between the mean square error in the stopband 
and the mean square error in the passband. For example, if a -  1, the mean 
square error is minimized over the passband and not the stopband, and if 
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a -  0, the mean square error is minimized over the stopband and not the pass- 
band. 

To solve this optimization problem, consider a similar problem where 
the vector, x, and the variable,/3, are unconstrained continuous variables. 
Substituting the appropriate expressions for Jpb and Jsb into Equation ( 8 ) 
yields 

(1 - a)  f l_2xrQ s x. J(x, fl) : ~ [ f l - 2 x T Q p x -  2 f l - lxTRp + yp]+ m(COsb------ ~ 
m( O~ pb ) 

The necessary conditions for an optimal solution are 

OJ(x,/3) =0 

and 

( 9 )  

Equation ( 10 ) implies 

(1 - a)  2fl_3xTQ s x = O. Ot [_2fl_3xTQpx + 2fl_2xTRp] - m(~176 
m(O)pb ) 

Rearranging Equation ( 11 ), 

[ ~ Q p  
m( fO pb ) 

which implies that 

where 

+ !1 - a)  ] a 
m(rOsb ) Qs x = fl m(r~ b ) 

x = f l x  o 

Rp ( 13 ) 

[ ]' a (1 - a )  a 
Xo= ~ Q p + ~ Q s  

m(Oopb ) m(COsb ) m(COpb ) 
Substituting x - fix o into Equation ( 12 ), 

~ R p .  

(1 - a)  2fl_lxTQ s Xo = 0 a [_2fl_lxTQpx ~ + 2fl_IxTRp] - m(C~ 
m( OO pb ) 

which implies that 

T [xo   xo 
m(O)pb ) 

(1 - a )  

m((.Osb ) 
xTQs Xo =0 .  

Equation ( 14 ) shows that when the optimal vector, fix o, is substituted into 
Equation ( 12 ) that the equation is no longer a function of ft. This implies 

( 1 2 )  

(14) 

~J(x, /3)  = o .  ( lO ) 

Because Qp and Qs are symmetric matrices, Equation ( 9 ) becomes 

3J(x, r) 2or [~-~ 1 ] 2(~ - ~ )  , - ~ Q s  x = o. ( ~ ~ ) = m(COpb-------S Q pX - r -  R p + m(COsb---'-~ 
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that the optimal solution is x - [3x o where/3 is any real number. 
Consider the original problem where the elements of the vector, x, are 

constrained to be even integers except when N is odd in which case the first 

element of the vector, x, is constrained to be either an even or odd integer. 
From the above discussion, the cost function in Equation ( 8 ) is minimized 
when x = f ix  o for any real/3. For a fixed value of/3, the cost function in Equa- 
tion ( 8 ) is quadratic and the constrained values of x that minimize a quadratic 
cost function can be determined by rounding to the nearest allowable value. 
Thus, for a fixed range of/3's, such as 1 </3 < B, a set of optimal vectors can 
be determined as a function of/3. The optimal vector, x, for this problem can 
be determined by substituting the set of optimal vectors and their correspond- 
ing/3's into the cost function in Equation ( 8 ) and choosing the vector, x, 
which minimizes the cost function in Equation ( 8 ). 

III. A Technique for the Implementation of Nonrecursive 
Discrete Time Transport Processors 

A FIR discrete time system can be implemented using the direct convo- 
lution flowgraph shown in Figure 1. A FIR discrete time transport processor 
is a discrete time system that is comprised only of delays, adds and subtracts, 
and thus, the coefficients in its implementation are constrained to values of 
+1, -1 and 0. If a transport processor has an impulse response whose values 
are comprised only of +1, -1 and 0, it can be implemented using the direct 
convolution flowgraph shown in Figure 1. But, if a transport processor has an 
impulse response that contains integer values other than +1, -1 and 0, the 
transport processor cannot be implemented using the direct convolution struc- 
ture shown in Figure 1. However, a combination of parallel and cascaded di- 
rect convolution structures that have only coefficients of +1, -1 and 0 can be 
used to implement FIR discrete time transport processors that have impulse 
responses which contain integer values other than +1, -1 and 0. In this sec- 
tion, a technique for implementing transport processors with integer valued 

In Z-I Z-I Z-I 
~ O O 0  

h(0) h(1) h(N-2) h(N-1) 

O O 0  

Out 

Figure 1. Flowgraph of a Direct Convolution Filter. 
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i , 

| 

In Out 

Figure 2. Interconnection of Direct Convolution Structures Used to 
Implement Nonrecursive Transport Processors. 

impulse responses is developed that uses the structure in Figure 2 where the 
subfilters, t l l (n  ), f21 (n), t21(n ) ..... tpM(n), are implemented using the direct 
convolution flowgraph in Figure 1 with coefficients of +1, -1 and 0. 

Consider the filter structure in Figure 2 where t 1 l(n),f21(n), t21(n ) ..... 
tpM(n ) are the impulse responses of the subfilters. The structure's impulse re- 
sponse, h(n), is 

h(n) = t l l (n  ) + f21 (n) �9 t21(n ) + . . .  + f21 (n) �9 f31(n) *""  * fPl (n) * tpl (n) 

+... + tiM(n) + ... + f2M(n) * f3M(n) * . . . ,  fpM(n)  * tpM(n ) 
where * represents convolution. Because each of the subfilters are imple- 
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mented using direct convolution with coefficients of + 1, -1 and 0, each of the 
subfilter's impulse responses are constrained to have values of + 1, -1 or 0. 

To show that the filter structure in Figure 2 can realize any finite length 
integer valued impulse response, consider using only the tlk(n ) subfilters to 
implement an integer valued impulse response, h(n). If h(n) is bounded such 

that 

Ih(n l--- L, 
then the system can be implemented by choosing values of + 1, - 1 or 0 for each 
of the tlk(n) subfilters such that 

L 

h(n) = E tlk(n)" 
k=l 

Although the choice of coefficients for the tlk(n) subfilters is not unique, such 
an implementation requires a minimum of L subfilters. By utilizing the other 
subfilters, fewer than L subfilters can be used to realize h(n). 

To assure that the transport processor has linear phase, each of the sub- 
filters is designed so that the final implementation has linear phase. Consider 
a transport processor that has a finite length integer valued impulse response, 
h(n). If the transport processor has linear phase, 

h(n)={ho ( N - l - n )  otherwise0<n<N-I 

where N is the length of the impulse response�9 If we define 

hi l(n) - tl l(n) 

hzl(n) = f21(n) * t21 (n) 

h31(n) = f21(n) * f31(n) * t31(n) 

hpM(n ) = f2M(n) * f3M(n) * ..., fpM(n) * tpM(n) ' 
then 

h(n) = hi l(n) + h21 (n) + h31 (n) + ... + hpM(n)" 
To ensure that 

h(n)={ho ( N - l - n )  

each of the subfilters is designed so that 

O<n<N- I  
otherwise 

hrc(n)={~c(N-l-n)  O<n<N-lotherwise 
for r - 1, 2 ..... P and c - 1, 2 ..... M. A useful result for equating the lengths 
of h ll (n), h21(n),..., hpM(n) is that when two impulse responses of finite 
lengths, N 1 and N 2, are convolved, the result is a finite impulse response of 

length N 1 +N 2-1. 
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Because the tlk(n) subfilters are in parallel with the other cascaded sub- 
filters, each of these subfilters can change the impulse response created by the 
other subfilters by +1, -1 or 0. Although not effective for realizing large im- 
pulse response values, these subfilters can be used to make small adjustments 
to the impulse response created by the other subfilters. For example, the sub- 
filter, t l l(n), can adjust the impulse response created by the other subfilters by 
+1, -1 or 0. Thus, the t I k(n) subfilters are designed last to adjust the impulse 
response created by the other subfilters. 

For many linear phase frequency selective filters, the center of the im- 
pulse response contains the impulse response's largest absolute value which 
would be Ih[(N- 1)/211 when N is odd, and Ih(N/2)l and Ih[(N/2)- 1 ]1 when N is 
even. The impulse response's smallest absolute values generally occur near 
the impulse response' s ends which would be h(0) and h(N-1). If M - M o in 
the filter structure, then the subfilters, t I l(n), tl2(n ) ..... tlMo(n ), can realize 
absolute values up to M o, and the other subfilters do not need to realize those 
values in the impulse response. For example, if M -- 1 and h(n) is 

n 0 1 2 3 4 5 6 

h(n) 1 -2  5 9 5 - 2  1 
then t l l (n ) can be designed such that 

t I l(0) = t I 1(6) = 1, 

and thus, the remaining subfilters only need to realize the impulse response, 
hd2 l(n), where 

n 0 1 2 3 4 5 6 

hd21(n) 0 -2  5 9 5 - 2 0 .  
Similarly, if M =  2, t 1 l(n) and tl2(n) can be designed such that 

t I l(0)+t12(0) --- t 11(6)+t12(6) = 1 

and 

t I 1( 1 )+t12 ( 1 ) -- t 11 (5)+tl 2(5) - -2 

t l l (1) = tl Z(1) - tl l (5) - t12(5) -- -1. 
Thus, the remaining subfilters only need to realize the impulse response, 
hd2 l(n), where 

n 0 1 2 3 4 5 6 

hd21(n) 0 0 5 9 5 0 0 .  
After selecting a value for M and determining hd21(n),f21(n ) is chosen 

so that it approximates the impulse response, hd21(n ). The length off21(n ) is 
generally kept small compared to N since it is the first subfilter in cascade 

with t21(n),f31(n ) ..... tpl(n). To approximate hd21(n ), the values inf21(n ) are 
chosen as the values nearest the values at the center of the impulse response, 
hd2 l(n). For example, if N is odd and the length off21(n ) is chosen to be 
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but because the values of r2 I (n) are constrained to + 1, - 1 and 0, t2 ( 1 ) is cho- 

sen as 

This procedure continues until n > ( N ,  1-1)/2. To ensure linear phase, the val- 
ues of t2 (n), for n > (Nt2 I - 1)/2, are ciosen so that 

h2 1 (n) = h2 1 ( N  - 1 - n) . 

h(n) - h21(n) = h(n)  - f21(n) * 121(n) 

After determiningf21(n) and t2 , (n) ,  hd31(n) is calculated by computing 

and then setting to zero this sequence’s ends which are absolutely less than M 
as was done when determining hd21(n). f31(n) is then designed to minimize 

1 
E = -jK IHd3 1 ( m )  - F2 I (0)F3 1 (m)I2 dm ( 1 5 )  2 z  -7t 

where 

and N J ~ ~  is the length off31(n). 

To determine E, let 

and 
1 

cos(0) 

c o s [ y m ]  
Y odd 

cos( m/2) 

cos( 3m/2) 

c o s [ y m ]  

which implies that 
T T 

Hd31(m)=xh d3 1 SN(m)=sN(m)xhd31 

Define the sequence c(n) as 

which has length N,= Nf21+Nf31-l, and let 
c(n) =f2 1 (n)*f3 1 (n) 

N even 
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then C(W), the amplitude of the frequency response of c(n), can be expressed 
as 

c ( W )  = F2 I (W)F3 I ( W )  = X T S N ,  (a) = s;, ( W ) x c .  

Thus, Equation ( 15 ) can be written as 

1 T "  
- 2 ~  hd31 J -JK S N ( O ) S ; ,  ( w )  dw x c  + x ~ J : "  WN, dm xc 

where W,(W) is the matrix, 

WN (0) = S N  ( 0 ) s ;  (a), 
which was defined in Section 11. If we define 

2 7 c ;  0 
JK r-------- 

Q N = ~ - ~ W N ( O ) ~ W =  

where I N  is the NxN identity matrix, then 

N odd 

N even 
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N-I 
- -- X SN((O)Sl vT (CO) de0 

7C hd31 tr c 
n = 0  

If N and N c are both odd or both even, then 

f •  SN(CO)S T (r dco 
117 C 

N c-1 
Xc + ---'Z c2 (n). 

n = 0  

and 
N-I Nc-I Nc-1 

t?-  ~ h 2 3 1 ( n ) - 2  Z hd31( n+N-1 Nc-l)c(n)+ Z c  2 2 (n) 
n=0 n=0 n=0 

which can also be written as 

, 

n = 0  

If N is odd and N is even, c 

where 

N-I Nc-I 
Z h231(n) 1 = - - - X ~ d 3 1 Q N , N  c Xc + Z c 2 ( n )  
n = 0  n = 0  

QN,N c = [  (-1)r+c+l (-1) r+c ] 

r + C - � 8 9  + ~ J  

( 1 7 )  

(18) 

and hd3 l(n) is 

n 0 1 2 3 4 5 6 

hd31(n) 0 - 2  5 9 5 - 2  0 
then an optimal f31 (n) can be determined by evaluating e for the small number 

for r --- 1,2 ..... N/2 and c -- 0, 1 ..... (N c- 1 )/2. 

For example, if f2 l(n ) was determined to be 

n 0 1 

f21(n) 1 1 

(_1) c+r+l (_1) c+r ] 
QN, Nc = + ~  c + r - � 8 9  c - r  +1 

( 1 9 )  

where 

for r - 0, 1 ..... (N- 1 )/2 and c = 1, 2 ..... Nc/2. And, if N is even and N c is odd, 

N-I Nc-I 

Eh 31(")-Lx 'd3 QN, N, Xc+ Ec2(n) 
7t" 1 

n=O n=O 
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Table 1. Results of e's for determining f31(n). 

f31 (n) f21(n)*f31 (n) 

0 1 0 1 2 

-1 -1 -1 -2 -1 201 
-1 1 -1 0 1 141 

1 -1 1 0 -1 141 
1 1 1 2 1 89  

of various f31 (n)' s. The length, Nf31, off31 (n) is generally kept small so that 
the length off21(n)*f31(n) does not exceed the number of the nonzero terms in 
hd3 l(n) and because it is in cascade with several other subfilters. For this ex- 
ample, let Nf3 t = 2. The results are summarized in Table 1 where the e's were 
determined Usmg Equation ( 17 ). From the table, the f3 l(n) that minimizes e 
is 

n 0 1 

f31(n) 1 1. 
The design continues choosing the f a n d  t subfilters in the same way 

f3 l(n) and t21(n) were chosen, respectively. 

IV. Example 

Consider a linear phase FIR discrete time transport processor that ap- 
proximates the frequency response, Hd(ei~ exp[-(N-1 )(o/2] Hd(co), where 

~/d(oJ) = {~ o_< o9_< O)p 

co s < co < 7r 

]3 is a constant greater than one, co_ = 0.457r radians/sample, co = 0.55n: radi- 
/7_ 

ans/sample and N is the length of the filter's impulse response, s The transport 
processor should also approximate Hd(e/% in a minimum mean square error 

sense, satisfy the following requi[ements 

-0.5 dB _< 20 lo~:l n'~)/<__'"'" 0.5 dB 0 _< co ___ fop 
-1 P / 

20 log < 30 dB cos < co < lr 

and the transport processor's impulse response, h(n), should be bounded such 

that 
Ih(n)l--- t - 40. 

The design begins by determining an integer valued impulse response 
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using the technique described in Section II of this chapter. An impulse re- 
sponse, ho(n), that satisfies the filter specifications when f l -  1 can be deter- 
mined by solving Equation ( 13 ), 

(1 -a) ] a 
~ Q p + ~ Q s  x = f l  R m(OOpb) m(fOsb) m(fOpb) P 

where fl = l, m((.Opb ) = ~p-  0, m(eOsb) = Jr- coo, Q,, = Q(fOp)- Q(0) 
,,~ y 

Qs = Q(r Q(co s) and p = R(60p) - R(0). The values f6r N and a are cho- 
sen so that the passband and stopband specifications are satisfied. For exam- 
ple, if the values of N and r are chosen so that the passband specification is 
met, but the stopband specification is not, the value of a should be reduced. If 
both the passband and stopband specifications cannot be satisfied for a specif- 
ic values N and oe, the value of N should be increased. These values can be al- 

tered until the passband and stopband requirements are met. Because the im- 
pulse response, h(n), of the transport processor will contain only integer val- 
ues, the passband and stopband requirements only need to approximate the fil- 
ter specifications. For this example, the values of N and a were determined to 
be 20 and 0.6, respectively. The resulting impulse response, ho(n), is listed in 
Table 2, and the magnitude of the frequency response is plotted in Figure 3A. 
Figure 3B shows the magnitude of the passband in detail. 

To determine the optimal integer valued impulse response, h(n), a set of 
integer valued impulse responses is generated by rounding the product of 
ho(n) and/3 for 1 </3 < B where B is chosen so that Ih(n)l < L. Because ho(10) 
has the largest absolute value in the sequence, ho(n ), B = (L+O.5)/ho(lO). 
Each of the integer valued impulse responses and their corresponding fl's are 
substituted in the cost function, J, described in Equation ( 8 ). A plot of J vs. 

Table 2. Impulse response, h o(n). 

ho(O) = ho(19)= 0.01125563141 
ho(1) = ho(18)= 0.01640259639 
ho(2) = ho (17) = -0.02035408668 
ho(3) = ho(16) = -0.02640598838 
ho(4) = ho(15)= 0.03365206042 
ho(5) = ho(14) = 0.04406658762 
ho(6) = ho(13)=-0.05958403968 
ho(7) = ho(12)=-0.08662230534 
ho(8) = ho(11) = 0.1480174823 
ho(9) = ho (10) = 0.4494475632 



272 PETER A. STUBBERUD AND CORNELIUS T. LEONDES 

(A) 

~" -20 

-4o 

-60 

i .. 
~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  

............................................................................................................... i 

0 0 .2~ 0.4~ 0.6~ 0.8~ 

(o (radians/sample) 

. 5  ............................................................... : ................................................................... : .......................................................... - ............................................................................................................................... 

o 

-0.5 

-1 
0 0.1 ~ 0.2 ~ 0.3 ~ 0.4 ~ 0.5 

(o (radians/sample) 

(B) 

Figure 3. Magnitude of the frequency response for the filter that has 
the impulse response h o(.). 
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Figure 4. Plot of J(flXo, fl) vs. ft. 

fl is shown in Figure 4. J is minimized when f l -  68.657, and therefore the 
transport processor 's  optimal impulse response, h(n), is 

h(n) - round[fl h o (n)]lfl=68.657 

h(n) is listed in Table 3, and the magnitude of its frequency response is plotted 

in Figure 5A. Figure 5B shows the passband in detail. 
We are now ready to implement h(n) using the transport processor struc- 

ture shown in Figure 2. The implementation begins by choosing a value for 
M. For this example,  we will let M - I. If h(n) cannot be implemented by the 

Table 3. Impulse response, h(n). 

h(0) = h(19) = 1 
h(1) = h(18) = 1 
h(2) = h(17) = -1 
h(3) = h(16) = -2 
h(4) = h(15) = 2 
h(5) = h(14) = 3 

h(6) = h(13) = -4 
h(7) = h(12) = -6 

h(8) = h ( l l )  = 10 

h(9) = h(10) = 31 
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Figure 5. Magnitude of the frequency response for the filter that has 
the impulse response h(n). 
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n 

hd21(") 

structure in Figure 2 where M = 1, then let M = 2 and repeat the implementa- 
tion procedure. If the structure in Figure 2 where M = 2 also cannot imple- 
ment h(n),  then M is increased until the structure can implement h(n) .  Letting 
M = 1, hd2 I ( n )  is 

0 1  2 3 4 5  6 7 8 9 1 0 1 1  1 2 - - -  

0 0 0 -2 2 3 -4 -4 10 31 31 10 4 1 . .  

n 

r21(n)  

wherehd21(n)= hd? I (19 -n ) fo rOln5  19. 

that it approximates the impulse response, hdZ1(n) .  For this example, the 
length. 

The next step in the implementation procedure is to determinef21(n) so 

~ f f ~ ~ ( n )  is chosen to be two, and thus 

f21(0) = W[hd21($ - I)] = sgn[hd21(9)] = 1 

f21I1) = SP[hd21($)] = W [ h d * I  (lo)] = 1 ' 

The next step is to determine t21  (n). Forf21(n)*r2 I (n) to have length 

N = 20, f 2  ( n )  is designed to have a length. N,21 .  where 

Starting at n = 0, r2 (n) for 0 I n I 9. is determined recursively using 

Nr,, = N - i$1f21 + 1 = 20 - 2 + 1 = 19. 

0 1 2  3 4 5  6 7 8 9 1 0 1 1  1 2 * . .  

0 0 0 - I  1 1 -1 -1 1 1 1 -1 -1 ... 

For 10 5 n I 19, 

so that 

Using this procedure f2 l (n)  is 

~21(")=f21(%,, - - 1  - n )  

h21(n)=h21("1 -n). 

n 

h(n)-h21(") 

0 1  2 3 4 5  6 7 8 9 1 0 1 1 1 2 . . .  

1 1 -1 -1 2 1 -4 -4 I0 29 29 10 -4 ... 

whererZl(n)= f21(18-n)forOIn 5 18. 
Next. hd31(n) is calculated by computing 

h(n)  - A2 1 In> = h(n - f2 1 ( ? I )  * r2 1 ( n  
which is 
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and then setting to zero this sequence's ends which are absolutely less than M. 
This yields 

hd31(n) 
0 1 2 3 4 5 6 7 8 9 10 11 12 

0 0 0 0 2 1 - 4  - 4  10 29 29 10 - 4  

where hd31 (n) = hd31 (19-n) for 0 < n < 19. 
f31 (n) is then designed to minimize lI: 

e - IHd31 (r - F21 (a0F31 (o9)12 dco 
27r zr 

For this example, l e t  Nf31 - 2. Using Equation ( 19 ), e is calculated for the 
small number of various f31 (n)'s" The results are summarized in Table 4. 
From the table, the f31 (n) that minimizes e is 

n 0 1 

f31(n) 1 1. 
The design continues choosing the f and t subfilters in the same way 

f31(n) and t21(n) were chosen, respectively. The final filter implementation is 
summarized in Table 5. The only subfilter worth noting is f61(n) which is an 
impulse. Subfilterf61(n) was chosen as an impulse because hd61(n) was 

hd61(n) 
0 1 2 3 4 5 6 7 8 9 10 11 12 .-. 

0 0 0 0 0 0 0 0 6 11 11 6 0 -.- 

which has 4 nonzero terms and the length off l  l(n)*-'-* f51 (n) was 5. Because 
f61(n) is an impulse, t51(n)and t61(n) are essentially connected in parallel from 
the output off5 l(n). Thus, f61(n) can be omitted from the transport processors 
implementation. 

Iff l  l(n)*..-* f61(n)*t6 l(n) had not been able to complete the implemen- 
tation of the transport processor, then the implementation procedure would 
have been repeated for M -  2. 

Table 4. Results of gs for determining f31(n) in the Example. 

f31(n) f21(n)*f31(n) e 

n 0 1 0 1 2 

-1 -1 -1 -2 -1 2053.1 
-1 1 -1 0 1 2003.6 
1 -1 1 0 -1 1912.4 
1 1 1 2 1 1870.9 
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Table 5. Transport processor coefficients for the Example. 

tl l(n) 

f21 (n) 

t21 (n) 

f31 (n) 

t31 (n) 

f41 (n) 

t41 (n) 

f51 (n) 

t51 (n) 

f61 (n) 

t61 (n) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -.. 

1 1 

1 1 

0 0 

1 1 

0 0 

1 1 

0 0 

1 1 

0 0 

1 

0 0 

- 1  - 1  1 0 - 1  0 1 1 1 1 0 - 1  0 1 --- 

0 -1 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 -.. 

0 0 1 -1 -1 -1 1 1 -1 -1 -1 1 0 0 --- 

0 0 0 0 -1 1 1 1 -1 0 0 0 0 0 0 

0 0 0 0 0 1 1 0 0 0 0 0 0 0 

0 0 0 0 0 1 1 0 0 0 0 0 0 0 

If this filter had been implemented with multiplications, it would have 
required a minimum of 10 multiplies and 19 adds. This implementation of the 
filter requires 51 adds. 

V. Summary 

In this chapter, techniques were developed for the design and implemen- 
tation of frequency selective linear phase discrete time transport processors. 
The design technique determines an optimal integer valued finite impulse re- 
sponse. References [l; 2; 3; 4; 5] describe other techniques for determining opti- 
mal integer valued finite impulse responses. The implementation technique 
developed in this chapter determines a nonrecursive transport processor struc- 
ture that can realize integer valued finite impulse responses which could have 
been determined from the technique described in this chapter or from the tech- 
niques described in references [l; 2; 3; 4; 5]. As the example illustrates, these 
techniques are well suited for the design and implementation of frequency se- 
lective linear phase discrete time transport processors. 
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Bl ind D e c o n v o l u t i o n  
Channel Identification 

and Equalization 
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I n t r o d u c t i o n  

There is a plethora of applications where the observed signal after sampling 
can be written as 

v(~) - f ( ~ ) ,  ~(~) - ~ f (k)~(~  - k), (~) 
k 

n, k E Z  

where Z is the set of integer numbers and {,} denotes the linear convolution 
operation. For example, this situation arises in communication links subject 
to linear distortion or multipath propagation, [1-4], blurring of images, [5-8], 
multiple signal reflections in seismology, [9,10], speech generation [11,12], 
and restoration of old recordings, [13], among others, [14]. Without loss 
of generality, the observed discrete time signal {y(n} can be viewed as the 
output of a stable discrete linear time invariant filter (channel) with impulse 
response {f(n)} which is driven by the discrete time signal {x(n)}. 

When one of the signals {f(n)} or {x(n)} is known exactly the other 
can be recovered from {y(n)} via inverse filtering or deconvolution. This 
is the classical problem of system/signal identification. The list of de- 
convolution methods proposed for this case is long. It includes a vari- 
ety of well known techniques that are based on the zero forcing (ZF), the 
minimum-mean-square error (MMSE), the least-squares (LS), the maxi- 
mum likelihood (ML), and other optimality criteria; recursive algorithms 
such as the least-mean square (LMS), the recursive least-squares (RLS), 

CONTROL AND DYNAMIC SYSTEMS, VOL. 68 
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and the Kalman algorithms; linear and nonlinear equalization structures 
[15,16]. 

Blind deconvolution refers to the problem of separating the two con- 
volved signals {f(n)} and {x(n)} when both signals are unknown or par- 
tially known. This is an important problem in seismic data analysis, trans- 
mission monitoring, deblurring of astronomical images, multipoint network 
communications, echo cancellation in wireless telephony, digital radio links 
over fading channels, and other applications when there is either limited 
knowledge of the signals due to practical constraints or there is sudden 
change in the properties of the signals [2,5,7,9,14]. Furthermore, in digi- 
tal transmission applications, blind deconvolution eliminates the need for 
the transmission of training sequences which are required by the non-blind 
deconvolution approaches [1-4]. By nature the solution of this problem 
requires either partial knowledge or an intelligent guess of the properties 
of at least one of the convolved signals. For example, one of the earliest 
approaches was based on homomorphic filtering where differences in the 
length of the cepstrum of the two unknown signals were exploited in order 
to separate them [11]. In other applications, a prototype signal with char- 
acteristics similar to those of the signal to be recovered has been utilized for 
blind deconvolution [13]. In digital communications the statistical or geo- 
metrical properties of the transmitted signal {x(n)} are usually known and 
are utilized by many algorithms to identify the unknown communication 
channel {f(n)}, and then to obtain {x(n)} via inverse filtering [1,2,17]. 

A possible classification of the existing blind deconvolution methods is 
depicted in Figure 1. The objective of this chapter is to provide an overview 
of the basic principles and methodologies behind these methods and demon- 
strate their utilization in applications. Without loss of generality, emphasis 
will be given to the blind identification and equalization of digital commu- 
nication channels; an area which has attracted a lot of interest lately. 

We begin our discussion by stating the problem of blind deconvolution 
and discussing the constraints imposed on the input data {x(n)} and the 
channel impulse response {f(n)} necessary for a solution to exist. An an- 
alytic description of the algorithmic structure of the major blind deconvo- 
lution approaches follows. The convergence behaviour, the complexity and 
other implementation issues are discussed for each approach. An attempt 
is made to highlight the strengths and limitations of various approaches 
based on theoretical expectations and computer simulations. 
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BUSSGANG 
METHODS 
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METHODS / 

(ME, MAP) ] 
CYCLIC SPECTRU~ 
METHODS | 
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Figure 1" Classification of blind deconvolution methods 

II  Prob lem Formulation 

A The General Blind Deconvolut ion Scenario 

The discrete time blind deconvolution scenario that will be considered in 
this chapter is depicted in Figure 2 (a). In general the input data {x(n)} is a 
zero-mean, independent identically distributed (i.i.d.) sequence with finite 
variance and higher-order statistics 1. We assume that the input (x(n)) 
is not known or accessible but is of known probability density function 
(p.d.f.) 2. The discrete-time impulse response { f (n ) )  of the linear time in- 
variant (LTI) filter is completely unknown. Based on the above assumptions 
both the input and output sequences, (x(n)} and {y(n)}, are stationary 
random processes. The objective is to recover first the characteristics of 
the {f(n)) from the observed {y(n)} and then obtain the {x(n)) through 

1 The problem with dependent input sequences has not been investigated sufficiently 
when the nature of dependency is not known. Multichannel approaches towards this 
direction have been proposed recently [18] 

2 In many situations the p.d.f, is not known exactly but is substituted by appropriate 
models. 
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inverse filtering 3. 
In theory, the discrete-time impulse responses {f(n)} and {u(n)} of the 

forward and inverse filters, respectively, are infinite length. However, in 
practice the length of the filters are chosen to be finite. Also, usually only 
a finite number of observed data samples {y(n)} is available. Thus, in 
practice only a close approximation {~(n)} of the input data is feasible. 

The following cases can be considered for the impulse response {f(n)} 
and the p.d.f, of the input signal {x(n)}: 

1. The {f(n)} is minimum phase, i.e., all the zeros and poles of the 
transfer function F(z)= ~_,n f(n) z-n lie inside the unit circle in the 
z-transform domain. In this case, one can utilize the second order 
statistics of the observed {y(n)}, exclusively, to recover {f(n)} or 
{u(n)}. The classical linear prediction method that is based only on 
the autocorrelation function of {y(n)} is an example of a second-order 
statistics based blind deconvolution method [16, 19]. 

2. The {f(n)} is non-minimum phase, i.e., the transfer function F(z) = 
~_,n f (n)z-"  has zeros that lie inside and outside the the unit circle in 
the z-transform domain 4. In this case, methods that are based exclu- 
sively on second-order statistics fail to identify the channel correctly. 
Actually, the autocorrelation based methods would identify a mini- 
mum phase filter that is power spectrally equivalent to {f(n)} rather 
than {f(n)} [11, 20]. Similar comments apply to the identification of 
{u(n)}. In other words, the second order statistics of a stationary se- 
quence do not preserve non-minimum phase information. Therefore, 
one must employ the higher-order statistics of order greater than two 
of {y(n)} to correctly identify the non-minimum phase characteristics 
of {f(n)} or {u(n)} [20]. 

3. The input sequence {x(n)} is Gaussian distributed. Therefore, the ob- 
served sequence {y(n)} is Gaussian distributed as well [14]. It is well 
known that the higher-order statistics of a Gaussian process provide 
no more information than that found in the second order statistics of 
the process. In this case solution to the blind deconvolution problem 
exists only if the impulse response {f(n)} is minimum phase. 

In most practical situations, the unknown impulse response {f(n)} is 
non-minimum phase. Thus, most of the existing blind deconvolution meth- 

3In many cases the characteristics of the inverse filter {u(n)} are recovered directly 
without prior identification of { f (n) }. 

4 In theory, we can allow poles to lie outside the unit circle. Nevertheless, in practice 
all poles must  lie inside the unit circle to guarantee stability of {f (n)} .  
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ods utilize directly or indirectly ( through nonlinear transformations ) the 
higher-order statistics (H.O.S.) of the observed sequence {y(n)}. 

B B l i n d  D e c o n v o l u t i o n  of  C o m m u n i c a t i o n  C h a n n e l s  

Let us consider the baseband digital communication system of figure 2 
(b). The observed signal, after being demodulated, low-pass filtered and 
synchronously sampled (i.e., at the symbol rate ~ ), takes the form of equa- 
tion 1. Therefore, the problem of blind deconvolution in this case closely 
follows the scenario of the previous sections. The following are some unique 
characteristics that are found in digital communications applications. 

1. The input signal {x(n)} is a complex, non-Gaussian, i.i.d., dis- 
crete random process with a discrete and symmetric probability den- 
sity function. For example, {x(n)} may be the complex baseband 
equivalent sequence of a Quadrature Amplitude Modulated signal 
(L 2 - Q A M ) ,  where x(n) = xR(n) + jx1(n) where xR(n) and xi(n) 
are two i.i.d, random sequences independent from each other and 
each taking the values +l ,- t-3,- t-(L- 1) with equal probability. Thus, 
the odd-order statistics (moments and cumulants) of {x(n)} are all 
equal to zero. 

2. The unknown impulse response {f(n)} is nonminimum phase and 
accounts for the total linear distortion introduced in the communica- 
tion channel( known as lntersymbol Interference (ISI)). In practice, 
{f(n)} is time varying. However, we make the assumption that it 
changes slowly with time and therefore is practically constant over 
a large number of observed data. We will assume that the transfer 
function F(z) = ~n  f(n) z-n can be factored as follows [11,21]: 

r ( z )  -- G .  z - d .  / ( z - l )  �9 O ( z )  ( 2 )  

where, the factor: 

La --1 
I(z-')- 1-Ik:~(1- a k z  ), lakl < 1, Ickl < 1 

1 1 ( 1  - -  CkZ- ) 

is minimum phase, i.e., with zeros and poles inside the unit circle, 
and the factor: 

Lb 
O ( z ) -  H ( 1 -  bkz), Ibkl < 1 

k = l  
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is maximum phase , i.e., with zeros outside the unit circle. Finally, 
the parameters G and z - d  represent a constant complex factor and a 
delay factor, respectively. 

3. It is sufficient that the channel {f(n)} and therefore the reconstructed 
input data to be identified up to a constant phase shift 0 and an 
unknown delay d [3, 14, 22]. In other words, the objective is to 
obtain: 

= - ( 3 )  

or  

x ( n )  �9 f ( n )  �9 u ( n )  : x ( n  - d)e je (4) 

Thus, the impulse response {u(n)} of a blind equalizer which plays 
the role of inverse filtering must satisfy: 

f ( n )  �9 u ( n )  = 5(n - d) . e j~  (5) 

where, 6(n) is the discrete delta function. Note that in digital com- 
munications the constant delay d does not affect the recovery of the 
input data sequence. Also, in general, the constant phase 0 can be 
removed after equalization by a decision device 5. Thus, in the deriva- 
tion of blind equalization algorithms we may assume that d -- 0 and 
0 = 0. Taking into account these assumptions, the "zero forcing" 
(ZF) equalization constraint is expressed as, [15, 21]: 

f ( n )  . u ( n )  = 6(n) ,  or F ( z )  . U ( z )  : 1 (6) 

where, U ( z )  is the transfer function of the equalizer. 

4. Because the input data sequence {x(n)} takes values from a discrete 
set of numbers, it is sufficient to identify the {f(n)} or {u(n)} to 
such a degree so that residual linear distortion at the output of the 
equalizer can be removed by means of a decision device (threshold 
decoder), as indicated in figure 2. 

5. In addition to the linear distortion the observed signal {y(n)} is sub- 
ject to additive Gaussian noise, carrier frequency offset due to imper- 
fect demodulation and other types of distortion that affect the perfor- 
mance of blind deconvolution methods. Thus, in conjunction to blind 
equalization, blind phase tracking/cancellation and noise cancellation 
algorithms should be utilized [2, 23, 24]. 

5 In L 2 - Q A M  signaling, the signals x ( n ) ,  x ( n ) e  :l:jgO~ , x ( n ) e  :l:Jl80~ are stat ist ically 
identical and therefore may not be distinguishable by blind deconvolution algorithms. 
Similar phase restrictions may apply to other signal constellations as well. 
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In the next sections, we describe in detail the principles and algorithmic 
structure of the major blind deconvolution methods that have appeared in 
the literature. 

a) 

x(n) J FILTER I y(n> J INVERSEFILTEr~ ~(n) 

-I z('> I ] =(n> 

b) 

I 
I 
I 
I 

! 
! 

! 
! 
! 

t 

ADDITIVE NOISE 

CARRIER FREQ. OFFSET 

I 
I 

J CHANNEL y(n) EQUALIZERI i~(~).]O~O~,ON 
I -I :('> - "(~ I : 7 ~176 
I 
! 

J 

~(~) 

Figure 2" a) Basic deconvolution set up, b) Baseband digital communication 
system subject to linear distortion. 



286 D. HATZINAKOS 

I I I  B u s s g a n g  A p p r o a c h e s  to Bl ind  D e c o n v o -  
lut ion  

A B u s s g a n g  I t e r a t i v e  D e c o n v o l u t i o n  M e t h o d  

This method which was first introduced by Godfrey and Rocca [25], under 
the name "zero-memory nonlinear deconvolution", proceeds as follows. An 
initial guess for the impulse response of the equalizer (inverse filter) is made 
and is denoted as u(~ n -- 1, 2 , . . . ,  N. Then, the output of the equalizer 
is written as: 

~(~ y (n)  �9 u(~ - ~(n)  , [S(~) * ~(0)(~)]. (7) 

Comparing relations (5) and (7), and assuming d - 0, 0 = 0, we conclude 
tha t :  

f (n)  �9 u(~ - 6(n) + e(~ (8) 

where e(~ is the error resulting from the difference between {u(n)} and 
{u(~ By substituting (8)  into (7),  we find that: 

~,(~ x(n) + [x(n) .  e(~ - x(n) + w(~ (9) 

The {w(~ is the residual linear distortion (residual ISI) at the output of 
the equalizer with coefficients {u(~ It is also known as "convolutional 
noise". 

Given {k(~ the problem then becomes to find an estimate of the 
input data {x(n)}, namely {d(~ In general, {d(~ will be a non- 
linear function of a subset of {k(~ In practice, it is simpler to choose a 
memoryless nonlinear estimator where d(~ at instant n depends only on 
s176 at the same instant; that is d(~ = g(0)[k(0)(n)]. We may obtain 
an optimum memoryless nonlinearity by minimizing the mean-square-error 
(MSE) criterion: 

E {Ig (~ [x(~ - x(n)l 2 } (10) 

where E{.} denotes statistical expectation. The solution is the well known 
conditional expectation [14, 26]: 

_ 

p~/~(~/~), p~(~) 
= p~(&) . (11) 
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The p.d.f. P~(x) of the input data is assumed known, the P~/~(~c/x) is 
assumed to be Gaussian 6 with mean x(n) and variance ~r 2 and the P~(2) w (o), 
plays the role of a normalization constant. 

The next step is to utilize the estimated sequence {d(~ to obtain a 
better estimate {u(1)(n)}, n = 1 , 2 , . . . , g  of the equalizer coefficients. To 
accomplish this we write: 

N 
d(~ -- y ( r / ) *  U(1) ( . )  -- E U(1)(]r y(T/ -- ]r (12)  

k=l 

and then repeat (12 )  for Nov different values of n to form an overdeter- 
mined system of equations: 

Y .  u (1) - d (~ (13) 

where, Y is an Nov • N, (Nov > N), matrix with elements from the 
observed data samples {y(n)}, d (~ is an Nov x 1 matrix with elements 
from {d(~ and u (1) - I s ( I ) ( 1 ) , . . . ,  u(1)(N)] T. Finally, we obtain the 
least squares solution 

u(1) _ ( y H y ) - i .  (yHd(0))  _ R~-I. ~.~d ) (14) 

where, Ry - y H y  is the N x N deterministic autocorrelation matr ix of the 

observed data {y(n)}, the ~ d  ) -- y H d ( 0 ) i s  the N x I crosscorrelation vector 

between {y(n)} and {d(~ and the H denotes transpose conjugate. 
Given u(1)(n), n = 1, 2 , . . . ,  N, the output  of the equalizer is written as: 

~'(i)(T/) -- y(r/) * I/(1)(//) -- X(//)-~- w ( i ) ( n )  (15) 

an estimate of the input data is obtained as follows: 

d(l)(n)-g(1)[~'c(l)(n)]-E{x(n)/~'c(i)(n)} (16) 

an update of the equalizer coefficients is found as follows: 

u(2) - R y l  �9 r ~  ) (17) 

and so on for iterations 3, 4, 5, .... Assuming that the process converges, 
the equalizer coefficients estimates u(i) - [u(i)(1) , . . . ,  u(i)(N)] T get closer 
to their ideal value and the variance of the convolutional noise a 2 w(,) at the 
output  of the equalizer decreases, as i increases. 

6In (9) ,  the w(~ = x(n) .  e(~ can be assumed to be approximately zero-mean 
Gaussian by means of the Central Limit Theorem (C.L.T). Furthermore,  the variance 
of w(~ is large compared to the magnitude of the crosscorrelation between x(n) and 
w(~ and thus, the {w(~ may be considered to be statistically independent of 
{x(n)} [14,16,27]. 
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B Adaptive Bussgang A l g o r i t h m  

At iteration n the output of the equalizer is written as: 

:~(n) - yT(n)u(n) (lS) 

where, u(n) = [u l (n) , . . . ,  uN(n)] T is the equalizer coefficient vector and 
y(n) = [y(n), y(n - 1 ) , . . . , y ( n -  i + 1)] T is the input data vector to the 
equalizer. 

To estimate u(n), we minimize the cost function: 

J(n) = E{G[~c(n)]} (19) 

where, G[~'(n)] is a memoryless nonlinear function of the equalizer output 
~(n). Then, by choosing a steepest descent adaptation procedure we obtain 
the following adaptation rule for the equalizer coefficients: 

u(n + 1) = u ( n ) -  7(n) .  V u J ( n )  (20) 

where, 7(n) -)/: 0 is a step size and V u J ( n )  the gradient of J with respect 
to the equalizer coefficient vector at iteration n. Furthermore, it can be 
shown that [2, 16] 

V u  J(n) = - E { e ( n ) .  y*(n)} (21) 

where, e(n) is  an error quantity defined as e(n) = v+G[~Cn)] and �9 denotes 
conjugation operation. Therefore, the coefficient adaptation rule becomes: 

u(n + 1) = u ( n ) +  7(n)" E{e(n ) .  y*(n)} (22) 

Notice, that according to the last equation optimality is achieved when 
the error e(n) is orthogonal to y*(n). Depending on the choice for the 
memoryless function G[.] (or equivalently the corresponding e(n)), different 
types of blind equalization algorithms can be derived. 

In the Bussgang adaptive equalizers the error at iteration n is defined 
as :  

(23) 
where g(")[~(n)] - E [x(n)/~(n)] is a memoryless nonlinear function. Thus, 
at the point of optimality, where E{e(n) .  y*(n)} = 0, we find after some 
calculations that: 

E{y* (n). g(n)[~(n)]} - E{y* (n). yT (n)} "Uopt. 
rvd Ry 

(24) 
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By comparing relations (24) and (17) we observe the similarity between the 
solutions for the equalizer coefficients obtained from the adaptive Bussgang 
algorithm and the iterative Bussgang method. 

In practice, the calculation of the optimum nonlinearity g(n)[~(n)] at 
iteration n is tedious and in general suboptimum because of the approx- 
imations made in modeling the convolutional noise at the output of the 
equalizer (see footnote 6). Thus, for simplicity a nonlinear estimator g[k(n)] 
which is independent of n is chosen. Also, in the adaptation rule the expec- 
tation operation E{e(n) .  y*(n)} is replaced by its instantaneous estimate 
e(n) .  y*(n). Finally, a constant step size 7 is often utilize because it is 
simple and provides a constant convergence rate. With these modifications 
t he  B u s s g a n g  a d a p t i v e  a lgo r i t hm can be  s u m m a r i z e d  as follows, 
[141: 

In i t ia l iza t ion:  7 

u ( . )  = [ .1(~), . . . ,  . N ( . ) ]  T 

y ( n ) -  [y(n) , . . . ,  y ( n -  N + 1)1T 

7:  step size 

u(0) - [0 , . . . ,0 ,  1 ,0 , . . . ,0]  T 

At i t e r a t i on  n - 0, 1 , 2 , . . .  

k(rt) = yT(n) ,  u(n) 

u(n + 1) = u(n) + 7" e(n). y*(n) 
~(n) = Q[~(n)], Q[.]: threshold decoding 

(25) 

A large number of adaptive Bussgang algorithms have been proposed 
in the literature [1-3, 28-46]. The error quantities utilized by few widely 
known Bussgang algorithms are given in Table I. the block diagram of a 
linear Bussgang equalizer is depicted in figure 3(a). 

This form of initialization has been found in practice to work well with Bussgang 
equalizers [3,14]. 
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Table I: Error quantities used in the coefficient adaptat ion rule of several 
Bussgang blind equalizers 

g[k(n)]: memoryless nonlinear function 

Algorithm 
LMS 
training 
mode, [15, 16] 

Bussgang 
Optimum ,[25] 
Decision 
Directed 
mode, [15, 16] 

Sato, [1] 

GSSA, [28] 

Godard, [2] 

CMA (p=2), 
-[30]- 
Benveniste- 
Goursat, [32] 

Stop-and-Go, 

-[33]- 
Stop-and-Go 
sign, [35] 

Error: e(n)  

~ ( . ) = ~ ( . ) - e ( . )  

~o. , ( . )  = E [ . ( , ) / ~ ( , ) ]  - e ( , )  

~ ( ~ )  = ~ ( , ) -  ~(n) 

~ ( . )  : . .  c~g . [~( . ) ]  - ~(n) 

ear,( . )  = ~(n)l~(n)lP-=(l~(n)l p -  Rp) 

~ ( . )  = ~ ( ~ ) ( R ~ - I ~ ( - ) I  ~) 

eBG(Tt)  = kl  . e D ( n ) - J f  - 

k~. ~s(n). I ~D(n) I 
' �9 [A.  eD(n)  + B e~)(n)] e s c ( n )  = ~ 

A = I R ( n ) +  I t (n ) ,  B = I n ( n ) -  I , ( n )  
I K ( T t ) - -  l+sgn(eK(n) ) ' sgn(eg(n) )  

2 
1 . [ A .  c s g n [ e D ( n ) ] +  e s c ( n )  = -~ 

B .  c~ . [~7~( . ) ] ]  

Comments 

x(n )  is known 

~(-) = o[~(.)] 
Q[.]: Threshold 
Decoder 

a = E{IRe[z(n)]l} 

7 =  45 
R v Elx(n)l~P 

= El~(n)lP 
R2 = EI:~(")I4 

El=(n)l 2 

kl,k2 > 0 

R: real 

I: Imag. 

csgn: complex 
sign function 
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C Convergence Behavior of Bussgang Algori thms 

Observing (25), we conclude that the coefficient adaptation rule for adap- 
tive Bussgang equalizers is similar to the classical Least-Mean-Square 
(LMS) adaptation that is used in non-blind equalization approaches. As 
such, the Bussgang equalizers are simple and easy to implement. The dif- 
ference between classical and Bussgang methods lies in the definition of 
the error quantity e(n). In the classical LMS approach e(n) = x ( n ) -  ~c(n) 
where x(n) is the true or "desired" value supplied by training sequences. 
In Bussgang adaptive algorithms the "desired" value, or in other words our 
"guess" for the true value, is provided by the nonlinear function g[k(n)] (or 
g(n)[k(n)]). An example that shows the true signal constellation and the 
assumed constellation by two Bussgang algorithms is given in figure 3(b). 

The convergence behaviour of the adaptive Bussgang algorithms resem- 
bles the convergence behaviour of the LMS algorithm in the sense that it 
depends on the value of the step size 7 as well as the eigenvalue spread 
of the autocorrelation matrix R u of the observed data samples at the in- 
put of the equalizer [21, 47]. In general, the convergence analysis of these 
algorithms is difficult due to the presence of the nonlinearity [48-52]. As- 
suming convergence is achieved, the following relations can be written at 
equilibrium: 

E{e(n) .y*(n)}=O (26) 

or after multiplying with uH(n): 

E{e(n). uH(n) �9 y*(n)} = E{e(n). k*(n)} = 0. (27) 

and after simple calculations: 

: ( 2 s )  

Note that a process s that satisfies (28) with a memoryless nonlinearity 
g[.] is called a "Bussgang process" [53]. Thus, at the equilibrium the output 
of a Bussgang adaptive equalizer will be a Bussgang process, hence the name 
of this class of algorithms. 

One problem with the Bussgang equalizers is that the underlying cost 
function G[~(n)] being minimized is non-convex with respect to the equal- 
izer coefficients. Thus, the G[~(n)] is in general multimodal. As a result the 
utilization of a gradient LMS algorithm may provide an undesired solution 
that corresponds to a local equilibrium of the cost function [54-59]. Thus, 
research has been directed towards deriving new desirable cost functions, 
or applying non-gradient adaptation procedures capable of escaping from 
local equilibria [60-63]. 
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a) 

y(n) ~Equa~inZ;r]( r ~:(n) I ~ ( n )  

 E1 

b) 
0 0 0 0 0 0 0 0 

�9 �9 
0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
Q Q 

0 0 0 0 0 0 0 0 

16-QAM Sato 

0 0 0 0 

O O 

0 0 0 0 

Godard  (p--2) 

Figure 3: a) Typical Bussgang adaptive equalizer, b) True (16-QAM) and 
assumed (g[~(n)]) constellation by the Sato ( 4 solid dots ) and the Godard 
(circle of radius Rp) equalizers. 
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I V  Polyspectra Approaches to Blind Decon- 
volution 

A T h e  G e n e r a l  A p p r o a c h  

Polyspectra blind deconvolution approaches utilize the higher-order statis- 
tics (moments and cumulants of order greater than two) of the observed 
signal {y(n)} to identify the characteristics of the channel impulse response 
{f(k)} or the equalizer {u(k)}. Let us consider the linear filtering model 
with additive noise, that is" 

y(n) - E f (k )x (n  - k ) +  w(n) (29) 
k 

where, {w(n)} is a stationary zero-mean additive Gaussian noise sequence 
independent from the data {x(n)}. The rest of the assumptions are as 
in section II.B. Then, using the properties of higher-order cumulants, 
[20,64,65], the following relations are written: 

Cy,1 - 0  (30) 

Cy,2(T1) -- '~'x,2 " E f(klf(]r + 7"11 + Cw,2(T1) (31 / 
k 

Cy,3(T1, 7"2) -- "/x,3" E f ( k ) f (  k + T1)f(  k + 7"2) (32) 
k 

Cy,4(r~, r2, ra) - 7~,, " ~_,  f ( k ) f ( k  + r i)f(k + r2)f(k + ra) (33) 
k 

rl, r2, ra E. Z 

where, Cy,n(r l , . . . ,  m - l ) i s  the n-th order cumulant sequence of {y(n)}. 
For the zero-mean sequence {y(n)}, the second, third, and fourth-order 
r are defined as follows" 

c~,.(~1) 
c~,.(~,, ~.) 

c~,~(~,, ~,  ~.) 

= E{y(n)y(n + rl)} (34) 

= E{y(n)y(.  + ~l)y(- + ~.)} (35) 
= E { y ( n ) y ( n  + T1)y(n + T2)y(n -]- 7"3) (36) 

-- Cy,2(T1) " Cy,2(T2 -- 73) -- Cy,2(T2) " Cy,2(T3 - 7"1) 

-c,,,~(~-~) �9 c,,,~(,-1 -,-~) 



294 D. HATZINAKOS 

The constants 7x,2 = Cx,2(0), 7,,3 = C,,3(0, 0) and 7,,4 = C,,4(0, 0, 0) 
are the variance, skewness, and kurtosis of the i.i.d, sequence {z(n)}, re- 
spectively. 

The polyspectra are defined as multidimensional (m-d) Fourier trans- 
forms of cumulants. For example, the power spectrum, the bispectrum and 
the trispectrum are the l-d, 2-d and 3-d Fourier transforms of the second-, 
third-, and fourth-order cumulants, respectively. 

In relations (30)  to (33), we observe that the second-order cumulants 
of {y(n)} are corrupted by the Gaussian noise. On the other hand, the 
higher order cumulants of {y(n)} are Gaussian noise free and proportional 
to the corresponding order correlations of the channel impulse response. 
This is because the higher-order cumulants (of order greater than two) of a 
Gaussian process are in theory equal to zero. Furthermore, as it has been 
already mentioned in section II, the second-order cumulants of {y(n)} do 
not preserve the true phase character of nonminimum phase channels while 
the cumulants of order greater than two preserve the true phase character- 
istics of minimum as well nonminimum phase channels. For these reasons, 
higher-order cumulants and their polyspectra are useful in blind deconvo- 
lution. 

In digital communication applications the third-order cumulants of 
{y(n)} are equal to zero because both the {z(n)} and the {w(n)} are sym- 
metrically distributed around zero. Therefore, the fourth-order cumulants 
are utilized for blind identification/deconvolution of the communication 
channel. The basic problem is to find efficient ways to extract the channel 
impulse response from its fourth-order correlation function. 

Three types of polyspectra blind equalization schemes have been pro- 
posed in the literature: the parametric methods, the nonlinear least-squares 
optimization approaches, and the polycepstra-based techniques [66]. The 
parametric methods [67-72] are sensitive to the estimation of the order of 
the underlying parametric channel model especially in adaptive implemen- 
tations. The nonlinear optimization approaches, [73-77], are based on the 
minimization of a non-linear cost function that is formed from the higher- 
order cumulants or moments of the channel output. This cost function is 
in general multimodal. Thus, in adaptive realizations these methods re- 
quire good initialization procedures to avoid convergence to local solutions. 
Finally, the polycepstra-based techniques utilize the complex cepstrum of 
the higher-order cumulants of the channel output to estimate directly either 
the channel characteristics or the coefficients of appropriate linear and deci- 
sion feedback equalization filters [6,17,18,21,24], [78-82]. These schemes do 
not suffer from the above mentioned limitations of other polyspectra equal- 
ization approaches and they have been proven to be very successful blind 
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deconvolution techniques. One of the well known polycepstra algorithms is 
described next. 

B T h e  T r i c e p s t r u m  E q u a l i z a t i o n  A l g o r i t h m  ( T E A )  

This algorithm exploits the relations between the differential cepstrum pa- 
rameters of the channel impulse response {f(k)} andthe  "tricepstrum" of 
the channel output {y(n)} to identify the channel. The differential cep- 
strum parameters of {f(k)} are defined as follows [21, 78]: 

A(k)  - E a~ - E c~, B(k) - E b / k '  k - 1 ,2 ,3 , . . .  (37) 
i i i 

The {A(k)} are called minimum phase differential cepstrum parameters 
because they are functions of the minimum phase zeros and poles of the 
channel transfer function F(z)  (see Section II.B(2)). The {B(k)} are called 
maximum phase differential cepstrum parameters because they are func- 
tions of the maximum phase zeros of F(z).  Because we have assumed 
that Jail < 1, [bil < 1 and [cil < 1 for all i, the differential cepstrum 
parameters decay exponentially with k. Thus, in practice we can place 
A(k)  ~ O, k > p and B(k) " O, k > q, where the truncating parameters 
p and q are chosen accordingly s. 

The relation between these parameters and the channel impulse re- 
sponse becomes clear from the following recursive relations [11, 78]. Let 
i(k) = Z-~[I(z-~)]  and o(k) = Z-~[O(z)], where Z - l [  .] denotes inverse 
Z-transform. Then, 

A ( i - 1 ) . i ( k - i + l ) ,  k - 1  2 . . .  (38) 
1 

i(k) - --s , , 
i--2 

0 
1 

o(k) - -~ E B(1 i) . o ( k -  i + l), k - - I , - 2 , . . .  (39) 
i = k + l  

Then, 
f,~o,-m(k) = z - l [ I ( z - 1 ) O ( z ) ]  = i(k) �9 o(k) (40) 

In other words, the minimum and maximum phase components of the chan- 
nel impulse response can be obtained easily from the minimum and max- 
imum phase differential cepstrum parameters of the channel, respectively. 
Furthermore, given the {A(k)} and {B(k)}, one can easily obtain the co- 
efficients of a zero-forcing linear equalizer {Unorm(k)} (see figure 4(a)) or 

8Modif ica t ions  of the T E A  tha t  allow the channel  to have zeros on the un i t  circle 
have  been  p roposed  in [81] 
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the coefficients of a zero-forcing decision feedback equalizer {UAp(k)}and 
{UFD(k)} (see figure 4(b)) 9 as follows [21]" Let iinv(k) - Z-1[i(z11)] and 
Oinv(k) -  z-l[o~z)]. Then, 

1 k + l  

iinv(k) - - ~  E [ - A ( i -  1)]" iinv(k - i + 11, 
i=2 

k - 1 ,2 , . . .  (41) 

0 
1 

~ -- -k E [-B(1 - i ) ] .  o i , ~ ( k -  i +  1), k - - 1 , - 2 , . . .  (42) 
i = k + l  

Then, 
1 

Unorm(k) - z - l [ i ( z _ l ) O ( z )  ] - ii,~(k) �9 oi,~(k) (43 / 

Also, let io(k) - z - l [ l ( z -1 )O*(z -1 ) ]  and oo(k) - Z-l[O*(z-1)]. Then, 

1 k + l  

io(k) - --~ E [ A ( i -  11 + B ' ( i -  11]. i ( k -  i+  11, 
i=2 

k - l , 2 , . . .  (44) 

Then, 

1 k+l  

oo(k) - --~ E B ' ( i -  1). i ( k -  i+  1), 
i=2 

k -  1 ,2 , . . .  (45) 

[O*(z -1) 
UAp(k) -- Z - IL  -(~iZ i ] -- O(k) * oo(k) 

UAp(k) -- z - l [ I ( z - 1 ) O * ( z  -1) - 1] - io(k) - 6(k) 

The tricepstrum of {y(n)} is defined as follows [21, 78]" 

(46) 

(47) 

- [ t n  ] (48) 

where, Z(3) and Z(~ I denote forward and inverse 3-d Z-transform and In[.] 
denotes logarithmic operation. 

9The decision feedback equafizer in general exhibits less noise enhancement than  a 
linear equalizer [15, 21] 
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The tricepstrum takes the form, [78], 

c~,~(r  r : ,  r~) - 

In (7x,4" e 4 ) ,  T 1 - -  T 2 - -  T 3 - -  0 

- ~ A ( r ,  ) , r2 - 7"3 - O, 7"1 > 0 
- ~ A ( v 2 ) ,  r, - r 3 -  0, v2 > 0 
- ~ A ( r 3 ) ,  7" 1 - -  T 2 - -  0 ,  7"3 > 0 
1 B ( - ' r l  ) ,  7"2 - -  7"3 - -  0 ,  7"1 < 0 

� 8 8  r - ~ - o, r < o 

rl-~3B(--T3),  T1 -- T2 -- O, T3 < 0 
- 1 B ( r  r - r - r > o 

1A(-v2) ,  r l -  r 2 -  v3 < 0 
0, otherwise 

(49) 

We note that the differential cepstrum parameters of the channel appear 
repeatedly in four lines in the 3-d space of the tricepstrum. By properly 
combining relations (48)  and (49),  the following relation can be shown 
[78] 

P 

A ( K ) [ C y , 4 ( r l ,  7"2 - K ,  T 1) - -  Cy,4(T1 + Ii', T 2 + K ,  T 1 + K ) ]  + 

K = I  
q 

Z B ( J ) [ C y , 4 ( r l  - J, 7"2 - J, rl  -- J )  - Cy,4(T1,7"2 "4- J ,  7"1)1 

J = l  

- ~ .  c~,~(~,, ~ ,  ~11 ( 5 0 )  

The approximation in (50)  is due to the truncation of the differential 
cepstrum parameters. Then, we can repeat (50)  Np times with different 
values of 7"1 and 7"2 to form a linear overdetermined system of equations: 

P-a-p (51) 

where P is a Np x (p + q) matrix (Np > (p-4-q)) with entries of the form 
{Cy,4(A, p, A ) -  Cy,4(a, v, ~r)}; p is a Np x 1 vector with entries of the form 
{-T2-Cu,4(rl, r2, rl)}; a = [A(1) , . . . ,A(p) ,B(1) , . . . ,B(q)I  T is the (pxq) x 1 
vector of unknown cepstrum parameters. We can obtain the least squares 
solution o f (51)  as follows [21, 78]: 

a -  [ p H p ] - l p H p  (52) 

and then utilize the elements of a to obtain the coefficients of either the 
channel impulse response or the equalization filters. The general procedure 
to follow can be summarized in the following steps: 
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1. Estimate the fourth-order cumulants of {y(n)} 

2. Form the matrices P and p 

3. Obtain the least squares solution for a 

4. Calculate {fnorm(k)} or {Unorm(k)} or {UAL(k)) and {UFD(k)) 

5. Calculate the output of the equalizer and make a decision. 

However, in practice where the channel characteristics may change slowly, 
an adaptive procedure is more appropriate. The TEA is an adaptive algo- 
rithm that follows the next steps [21]: 

At iteration n - 0, 1, 2 , . . .  

1. Obtain recursively from the samples {y(n)} the time estimates 

M ( n + l )  y,4 (rl, r2 rl) = (1 - ,(n + 1) ~ ~t4(n) 

-[-.(it -[- 1)y(S~n+l))y2(S~ n+l) -[- T1)y(S~ n+l) -[- 7"2) 
-- 'l 'lc(n)(T)-~- , ( I t  -~ 1)y(S~n+I))y(S~ n+l) -~- T) ~.(n+x)(r) = (1 ,(n + ljj u,2 " y . 2  

C("+')(r, r2 n ) =  M~TI)(rI r2 r i ) -  2 C ~ , T I ) ( T 1 ) C ~ , T I ) ( T 2  -- 7"1) y.4 ' ' ' ' 

-- (7. (n+ 1) 0 (n+ l )  ( ( 5 3 )  

--M ~_T1,T2 <_M 

where, 7/(n) - -  ~,1 S~ n)  _ _  ~ n i n ( n .  n -  v )and  S~ n) - -  rain(n, n -  T1. n -  

M (~  , , - 0 .  1"2), u,4 (Vl T2 Vl) -- 0 and (0) 

2. Form the matrix P(n) and vector p(n) as P and p in (51),  but with 
C(,~ ) , Cy,4(T1,7"2, T 1) being replaced by its time estimate y,4 L, T1 , 7"2, 7"1)" 

3. Update the parameters {A(n)(k)}, {B(")(k)} using a gradient LMS 
type algorithm, i.e., 

a(n + 1) - a(n) + 6(n). p H ( n ) ,  e(n) (54) 

e(n) -- p ( n ) -  P ( n ) - a ( n )  

where the step size 6(n)is such that 0 < 6(n) < 2 
t ~. ~ ~ [P  " ( ~  ) P  (.)1" 
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4. Estimate either one of: 

i. The normalized channel impulse response tjnorm(k)} using rela- 
tions (38),  (39) and (40). 

ii. The normalized coefficients of a linear equalizer " (n) "t Unorm(k)} using 
relations (41),  (42) and (43).  

iii. The coefficients .t, (n) .t, (n) t .AP(k)} and t 'FD(k)}using relations (44) ,  
(45),  (46)  a n d ( 4 7 ) .  

5. Calculate the input to the threshold decoder: 

i) For a linear equalizer" 

$(n) - G(n) . E u(~)m(k)y(n - k) 
k 

ii) For a decision feedback equalizer (DFE)" 

~(n) - G(n). y ~ ,  (") U(F~ 1) - k ) -  - k + 

k k 

6. Make a decision ~(n) - Q[s based on threshold decoding. 

7. Recover the necessary gain and phase G ( n ) -  Ia(n)l Jr using 
blind gain and phase tracking algorithms. For example using the 
recursive algorithms 

i PO 
IG(~ + 1 ) l -  Q(n + 1)' Q(n + 1) - (1 - p)Q(n) + p 

r + 1) - r + 6,Imag[~*(n)[ic(n) - ~(n)]] 

Q(0) - 0, r - 0, p o  - E{Ix(n)l 2} ( 5 5 )  

where, 0 < p < 1 is a small number (e.g. p -  0.005) and 60 is an 
appropriate step size. 
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C P r o p e r t i e s  o f  t h e  T E A  a n d  o t h e r  P o l y c e p s t r a  A l g o -  

r i t h m s  

The least squares solution given by relation (52) exists and is unique pro- 
vided that the matrix P has linearly independent columns. Note that this 
requirement is usually satisfied by taking a sufficiently large number of 
equations, i.e., Np >> (p + q). 

On the other hand, in the adaptive solution of (51), as described in step 
3 of the TEA, the underlying cost function being minimized with respect to 
the vector a(n) is the ,1 = eH(n)e(n),  where e(n) = p ( n ) -  P(n)a(n). This 
cost function is quadratic with respect to a(n) and thus utilization of the 
LMS algorithm guarantees convergence to a global solution [16, 21]. This is 
an advantage of the TEA compared to the Bussgang family of algorithms. 

Since the LMS approach is used for adaptation, the convergence rate of 
the TEA depends on the size of the step size 6(n) as well as the eigenvalue 
spread of the deterministic autocorrelation matrix pHp .  These are well 
known properties in the literature [16]. 

The complexity of the TEA depends on the estimation of the fourth- 
order cumulants and the size of the matrix P in (51). It has been found, 
that a value of Np > 3(p+ q) is usually sufficient in practice. For large p or 
q the computational complexity is of the order O(p+ q) [21]. Note that the 
values of the differential cepstrum truncating parameters p, and q increase 
as the zeros and poles of the channel get closer to the unit circle and the 
complexity increases accordingly. 

The above properties of the TEA are shared by all polycepstra-based 
polyspectra blind equalizers [18,21,24,78-82]. 
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a) 

v(n) J Equalizer I 
{U~o~m(k)} 

t f)ol-ysp ec't rs [lgi . . . . . .  

L " LrGa n[ i t r:l 4-1 

v 

b) 

y(n) J Forward 
"1 Filter 

l ,  (n) 
l u A p ( k ) }  

f 1 --~ Polyspectra algs 
L . . . . . . . . . .  J 

Gain, Phase tr. 
I.  . . . . . . .  d 

v 

1/G(n) ~ Q  

[ Feedback 'L 
I Filter , I-" 

t 

Figure 4" a) Linear polyspectra equalizer, b) Decision feedback polyspectra 
equalizer 
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V M i n i m u m  Entropy Approaches  to Bl ind 
Deconvo lut ion  

Let us consider once again the deconvolution scenario depicted in figure 2 
where, 

~c(n) = u(n) �9 y(n) = u(n) �9 [f(n) �9 x(n)] : [u (n ) .  f(rt)] �9 x(n) (56) 

If the input random process x(n) to the linear time invariant channel .f(n) 
is Gaussian distributed then the output of the channel y(n) is also Gaus- 
sian distributed. On the other hand, if x(n) is non-Gaussian then y(n) 
is in general non-Gaussian, however, the "Gaussianity" of y(n) is higher 
than x(n). This is a result of the Central Limit Theorem that states that  
the linear superposition of similar random variables tends asymptotically in 
distribution to a Gaussian random variable. Note that the "Gaussianity" of 
a random process can be expressed by an appropriate statistical measure. 
Traditionally the kurtosis (i.e., the all zero lag of the fourth-order cumu- 
lant, see section IV.A) of a process has been used to indicate deviations 
form Gaussianity because the kurtosis of a Gaussian process is zero [20]. 
For example, sub-Gaussian distributed processes such as the uniformly dis- 
tributed process have a negative kurtosis while super-Gaussian distributed 
processes have a positive kurtosis. 

Since the effect of linear filtering (i.e., convolution with f(n) ) increases 
the Gaussianity of a random process, then, inverse filtering (i.e., deconvolu- 
tion with u(n)) must decrease the Gaussianity of the process. Based on this 
idea blind deconvolution can rely on maximizing or perhaps minimizing an 
appropriate measure of Gaussianity [9, 83]. The constraint or unconstraint 
maximization of the absolute value of the kurtosis has been proposed and 
utilized by various blind deconvolution schemes in the literature [9, 76, 
83-86]. For example, in [84] it was proposed to: 

Maximize IC~,4(0,0,0)] (57) 

Subject to: E{l~(n)] 2 } = E { I x ( n ) l  2} 

On the other hand, the entropy EN(Y)  of a random vector Y with proba- 
bility density function py(y) is defined as [15]: 

EN(Y)  - - f py(y)log[py(y)]dy. (5s) 
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For a random process the entropy EN(Y) can be used as a measure of devi- 
ation from Gaussianity as well. Among different distributions of a process 
the entropy is maximum for the Gaussian distribution. Thus, decreasing 
the Gaussianity of a process agrees with the minimization of the entropy 
[9, 83]. This is why the name "minimum entropy blind deconvolution" has 
been assigned to such deconvolution approaches. 

VI  Probabi l i s t ic  Approaches  
convolut ion  

to Bl ind De-  

Two general type of probabilistic approaches have appeared in the literature 
for blind deconvolution of communication channels. Those that employ the 
maximum likelihood criterion (ML) for jointly estimating the channel and 
detecting the data , [87-95], and those that employ Bayesian maximum 
a-posteriori (MAP)est imat ion principles [96-98]. 

To understand the basic principles behind the probabilistic approaches 
let us consider a block of N samples obtained from the linear filtering model 
with additive Gaussian noise, that is 

L 

y(n) - Z f(k)x(n - k) + w(n), n - 1,2,..., N (59) 
k=0  

where, the {x(n)} is the communication data sequence, {f(n)} is the 
communication channel and {w(n)} is zero mean white Gaussian noise 
of variance ~r 2. Then by defining the vectors y - [y(1),...,y(n)] T, 
f - [ f ( 0 ) , . . . , f ( L ) ]  T, and x - [x (1) , . . . ,x ( J ) ]  T, we find that the joint 
conditional probability density function is [87,89]" 

P(y l f ,  x) - ~ e l  __~_.2 E , ~ ,  lu(")-E~=0 :(k)x(n-k) 12 (60) 

To obtain the ML estimate of the channel and the data we must maximize 
the P(y l f ,  x) with respect to f and x. This is equivalent to minimizing the 
term in the exponent of P(ylf ,  x), that is 

N L 

_ m i n  (61) (XML,fML) --X~L,f~L Z ] y ( n ) -  Z f(k)x(n - k)[ 2 
n = l  k=O 

Assuming that the true data vector x is known a-priori, then, the fML c a n  

be easily obtained from the least squares solution o f ( 6 1 ) ,  [87]. On the 
other hand, assuming that the channel vector f is known, then, the XML is 
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obtained by carrying out a trellis search by means of the Viterbi algorithm 
(VA) [87,89]. The VA exhibits a complexity that is linear with respect to 
the length (J)  of the data vector x and exponential with respect to the 
length (L + 1) of the channel vector f. 

In the case of blind equalization the minimization of (61)  must be car- 
ried out jointly with respect to x and f. An exhaustive search optimization 
can be devised by taking into account the discrete nature of digital com- 
munication signals. Assuming that the communication data {x(n))  take 
M possible discrete values then, the vector x of length J will take one of 
M J possible solutions. Thus, we can calculate all possible data vectors 
x (i), i = 1 , 2 , . . . , M  J, for each x (i) obtain the corresponding ML channel 
estimate f(i) from the least squares solution of (61) ,  and then choose, [90]: 

m i n  If(i) )) (62) (XML,fML) =(i) P(Y , x(i 

Obviously, the exhaustive search approach exhibits high complexity that  
increases fast with J and L. This has motivated research towards the 
development of other approaches for joint data and channel estimation with 
less computational complexity. 

In [89,90], a generalized Viterbi algorithm was proposed where the un- 
derlying trellis search retains more than one in general "best" estimates of 
the data sequence at each stage of the algorithm ( in contrast to the classi- 
cal VA that  retains a single most probable estimate of the data sequence at 
each stage). In addition, the corresponding channel estimates are updated 
recursively by means of an adaptive LMS algorithm. This algorithm has 
been shown to work well by retaining as few as four sequence estimates at 
each stage at moderate signal to noise ratio environments. Its complexity 
is lower than that  of the exhaustive method, however, it is still much higher 
that  the complexity of the classical VA. 

In [91], a recursive algorithm that recursively alternates between the es- 
t imation of the channel and the estimation of the data sequence has been 
proposed. First an initial estimate of the channel is chosen. Given this 
channel estimate the VA is applied to obtain the optimum data sequence for 
this channel. Then, using this data sequence a new estimate of the channel 
is obtained based on the least square solution. This procedure is repeated 
until the algorithm converges. A similar and somehow improved proce- 
dure named "quantized-channel algorithm" has been proposed in [92,93]. 
At every step of the algorithm the channel is selected from a number of 
candidate channels on the basis of selecting the channel with the smallest 
accumulated error energy. Then, the classical VA is used to produce the 
opt imum data sequence. The algorithm needs to know the order of the 
channel and its energy. However, these quantities are in general unknown 
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and in practice can only be approximated. An advantage of the algorithm 
is its inherent parallel structure that may compensate for its high compu- 
tational complexity. 

The above algorithms for joint data recovery and channel estimation 
based on the ML criterion require relatively few received data samples to 
estimate the communication channel. These algorithms have yet to be in- 
vestigated thoroughly. However, they may become attractive methods for 
blind equalization of signal constellations that are approximately Gaus- 
sian distributed, as in the case of shaped signal constellations [94] , since 
they are not subject to the non-Gaussian signal restrictions required by 
the Bussgang, Polyspectra and other blind deconvolution approaches. The 
main drawbacks of the ML blind methods are their high complexity and 
the large decoding delay introduced by the utilized Viterbi decoder [87,89]. 

The other class of probabilistic methods for blind equalization, the MAP 
methods, in general have similar algorithmic structures to the ML ap- 
proaches. The main difference is found in the utilization of a MAP data 
sequence estimation instead of the Viterbi algorithm, in conjunction with 
least squares procedures for the estimation of the channel. A few such 
methods have been proposed in the literature, [96-98], however, without 
demonstrating any significant advantages or disadvantages compared to 
the ML approaches. 

V I I  Cyclic Spectrum Approaches to Blind 
Deconvolution 

Let us consider the the situation shown in fig. 5 where the discrete time 
signal y(n), n E Z is obtained by sampling the continuous time signal ~(t), 
t E T~ every Ts sec. The sequence {ak}, k E Z is a zero mean, i.i.d, data 
sequence, the ~(t) and ~(n) are the continuous and discrete time delta func- 
tions respectively, the T is the symbol duration, the f(t)  and f(n)  are the 
continuous time channel and the equivalent discrete time channel corre- 
sponding to the sampling instants respectively, and so on. This modeling is 
appropriate for digital communication links, digital recording systems and 
other digital transmission applications [15]. 

For any finite value of T ~ 0, the signal ~(t) is cyclostationary, i.e., all 
statistics of ~(t) are periodic in time t with period T sec [15,99]. Then, since 
the channel f ( t )  is linear time invariant, the 9(t) is cyclostationary with 
period T sec. as well. On the other hand, assuming that L E Z, L ~ 0, 
then, we must consider two different cases for the discrete signal x(n)" i) 
L > 1, in which case the x(n) is a cyclostationary signal with period L 
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samples, i.e., the statistics of x(n) are periodic with period L samples, or 
ii) L = 1, in which case the x(n) is a stationary signal, i.e., the statistics of 
x(n) are time invariant. Since the f ( n ) i s  linear time invariant, the y(n) is 
also cyclostationary with period L samples or stationary, respectively [99]. 

a) 

~ ( t )  - E k  a k 6 ( t  - kT) 

J .] /(t) 

b) 
x(n) = E k  akS(n - kL) 

J -] 

9 ( t )  - , T" - -  

v -  

y ( - )  = 

y(n) = x(n) , f (n)  - ~-~k akf(n  - kL) 

Figure 5: a) Continuous time model, b) equivalent discrete time model 

In the applications of blind channel deconvolution in digital communi- 
cations that we have examined thus far the observed cyclostationary signal 
has been treated as a stationary random process. This has been the result 
of synchronously sampling (i.e., L = 1 or Ts = T) the observed output of 
the communication channel (see eq. (1) .  However, synchronous sampling 
does not preserve the inherent cyclostationary properties of the observed 
signal since in this case y(n) is stationary as it has been argued above. 
Thus, another approach to the blind deconvolution of digital communica- 
tion signals would be to preserve and utilize the cyclostationary properties 
of these signals (i.e., periodicity of statistics) by oversampling (L > 1). Ac- 
tually, in few related papers that have appeared in the literature [100-109], 
it has been shown that the cyclic second order statistics (cyclic autocor- 
relation and cyclic spectrum ) do not share the limitations of the second 
order statistics of stationary signals (autocorrelation and power spectrum) 
and can be utilized for the blind identification of a large class of nonmin- 
imum phase channels. Among the channels that cannot be identified by 
blind cyclic second order statistics methods are those with all their zeros 
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and poles evenly spaced radially with angle ~'~ [101 104, 106] However, ~ �9 

this problem is rare and will occur for specific values of L only. Finally, we 
should mention that cyclic second-order statistics cannot be utilized for the 
identification of nonminimum phase discrete channels that are strictly ban- 
dlimited to a total bandwidth less than -~ fads/sample (or 2r rads/sec) -T- 
In this case the cyclic spectrum reduces to the classical power spectrum 
[100, 103]. 

Compared to the blind deconvolution approaches that utilize the higher- 
order statistics of the observed signal, under stationary signal assump- 
tions, the methods that utilize cyclic second order statistics possess the 
following attractive characteristics, [106]: i) fewer data samples are re- 
quired and less complexity is encountered in the estimation the cyclic sec- 
ond order statistics, ii) no restrictions on the distribution of the input 
data are imposed, iii) they are insensitive (in theory) to any stationary 
additive noise, and iv) fractionally-spaced sampling is less sensitive than 
synchronous sampling to timing errors. For these reasons, it is expected 
that the cyclostationarity-based methods could be the appropriate choice 
in many applications. Lately, there is an increased interest towards this 
direction. 

VIII Simulat ion Examples 

In this section we discuss the behaviour of different blind equalization al- 
gorithms by means of computer simulated results. The simulation set-up is 
based on a typical digital communications scenario with the assumptions 
of section II. For L-PAM signaling, {x(n)} is an i.i.d sequence taking the 
equally probable values ( - L +  1 , . . . , - 1 , 1 , . . . , L -  1). For L2-QAM sig- 
naling, {x (n )=  xn(n)+ jxi(n)} where, the {xn(n)} and {x1(n)} are two 
independent and identically distributed L-PAM sequences. The channel is 
modeled as a nonminimum-phase finite impulse response (FIR) filter like 
the complex channels depicted in figure 6. White and zero-mean Gaussian 
noise was added at the output of the channel. 

A number of performance metrics demonstrate the behaviour of the al- 
gorithms at each iteration: 

1. The mean square error between the output of the equalizer and the 
corresponding desired value, that is MSE = E{Ix(n-  d ) -  k(n)]2}. 

2. The symbol error rate (SER) which measures the percentage of wrong 
decisions in intervals of 500 samples. 
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3. The "discrete eye patterns" consisting of the signal values at the out- 
put of the equalizer drawn in two dimensional (for QAM signaling) 
space. We refer to an "open eye pattern" when threshold decoding 
can easily differentiate between neighbouring states. 

4. The residual intersymbol interference at the output of the equalizer 
~ k  II(k)*u(k)12 

that is defined as I S I  - ma~{ll(k),=(k)l ~} -- 1. 

5. The signal to noise power ratio (SNR)  measured at the output of the 
channel (input to equalizer). 

We must mention that the objective of most existing blind equalization 
algorithms is to open the eye pattern of the signal to a degree where de- 
cisions based on threshold decoding are reliable enough to switch to the 
simple and fast decision-directed (DD) algorithm [2,3]. Recall that the DD 
algorithm is one of the simplest Bussgang type equalizers. However, despite 
its blind properties, the DD algorithm in most cases fails to equalize chan- 
nels that introduce severe distortion to completely close the eye pattern of 
the signal [2,3,33]. Thus, more sophisticated blind equalization algorithms 
need to be applied prior to the DD equalization. 

Figure 7 demonstrates the ability of the TEA, [21], to track the mini- 
mum and maximum phase cepstrum parameters of the channel. The TEA 
was implemented as explained in section IV(B), with p = q = 6 and 

1 and converged to the true parameters at around 6 ( n ) -  t~ [Pn(n )P(n ) ] '  
500 iterations. 

Figures 8, 9, and 10 demonstrate and compare the convergence of the 
TEA and the convergence of the Stop-and-Go (SG), [33], and Benveniste- 
Goursat (BG), [32], linear equalizers with the channel examples of figure 6. 
The MSE and SER were calculated by ensemble averaging over 10 experi- 
ments with independent signal and noise realizations and by time averaging 
over 100 samples for each realization. Also, the eye pattern at iteration 
(n) was obtained by drawing the equalizer output for a specific number 
of samples around (n) for all 10 realizations. In figure 8 the theoretical 
mean-square-error lower bounds MSEout (for the TEA) and MMSE (for 
the SG) are provided as well. The M M S E  < MSEout because the TEA is 
a zero forcing (ZF) equalizer while the two Bussgang algorithms are mini- 
mum mean- square- error equalizers. The simulation results show that the 
TEA has faster initial convergence and therefore, opens the eye pattern of 
the signal faster than the two Bussgang algorithms. This behaviour is typ- 
ical among most polyspectra algorithms. However, the convergence speed 
of the TEA slows down after initial convergence. On the other hand, the 
SG and BG algorithms have slow initial convergence and speed up later 
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when the eye pattern of the signal starts to open. This is attributed to 
the structure of these algorithms that transforms automatically to the DD 
algorithm after the eye pattern opens (see Table I). 

In figure 11, the performance of four decision- feedback- equalization 
(DFE) algorithms is depicted with the channel example 1 of figure 6 and 
64-QAM signaling, [81]. The decision feedback predictor (PRED), [41], is 
based exclusively on classical linear prediction principles that utilize second- 
order statistics and thus, fails to equalize the nonminimum phase chan- 
nel. The decision feedback tricepstrum equalization algorithm (TEA), [21], 
and the extended tricepstrum equalization algorithm (ETEA), [24], utilize 
exclusively the fourth- order cumulants of the channel output. Finally, 
the decision feedback polycepstra and prediction equalization algorithm 
(POPREA), [81], is basically a combination of the PRED and ETEA algo- 
rithms. Thus, the TEA, ETEA and POPREA belong to polyspectra family 
of blind equalizers. The ETEA and POPREA utilize a different definition 
of fourth- order cumulants 1~ than the TEA and achieve faster convergence. 
Furthermore, the fourth-order cumulants utilized by ETEA and POPREA 
allow them to operate efficiently even in the presence of low to moderate 
carrier frequency offset (FO) which is often present in communication sig- 
nals due to imperfect demodulation [2,24,33]. This is clearly demonstrated 
in the equalized eye patterns of POPREA in figure 11. 

It has been mentioned in section III that the Bussgang equalizers might 
converge to local equilibria of their non-convex cost function. This has 
been sufficiently investigated and clearly demonstrated in the literature 
[54-59]. This type of convergence behaviour is illustrated for the Godard 
(p-2)  algorithm in figure 1211. The communication channel has a trans- 

1 12 and the input signal is 2-PAM. Obviously fer function F ( z )  - 1+0.6z-1 
the ideal linear equalizer (in absence of noise) is of length 2 with transfer 
function U(z)  - 1 4-0.6z -1. The Godard cost function with respect to 
the two unknown parameters of the equalizer exhibits two local and two 
global equilibria (minima) as it is shown at the top of figure 12. The two 
global minima differ by a sign reversal and therefore cannot be distinguished 
by blind deconvolution methods. Five different initialization settings were 
considered for the Godard equalizer: (1.3,-1), (-1.9, 1), (-1.7,-0.2), and 
(0.1, 0.3). We observe that for the first and fifth settings the Godard al- 
gorithm converged to the undesired local equilibria. This problem is also 
demonstrated by the corresponding MSE convergence. 

1~ Different definitions of the fourth-order cumulants of complex signals can be obtained 
by conjugating one or more signal terms 

11 From: "Analysis of Bussgang Equalization Schemes", by Jacob, Wah-Hing Leung, 
B.A.Sc. Thesis, ECE Dept., University of Toronto, April 1992. 

12The same channel has been considered earlier in [55] 
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To overcome the problem of convergence to local equilibria associated 
with Bussgang equalizers three general directions have been followed in the 
literature. The first tries to determine conditions that will allow efficient 
initialization of the algorithm [2]. However, this is not possible without 
having partial knowledge of the channel properties. The second direction 
recognizes that the problem of local convergence is due to the utilization 
of the LMS algorithm in the minimization of a non-convex cost function. 
Therefore, a different type of minimization algorithms should be applied. In 
[61,62], a simulated annealing algorithm was proposed for minimizing the 
Godard cost function. Simulated annealing is a random search procedure 
capable of escaping from local solutions. One such example is illustrated 
in figure 13 where, assuming the same initial equalizer settings, the Go- 
dard algorithm with LMS adaptation locks into a local solution, however, 
the Godard cost function with simulated annealing converges to the correct 
solution. Nevertheless this has been accomplished at the expense of high 
computational complexity. The third direction looks towards designing cost 
functions for blind equalization that are convex with respect to the equal- 
izer parameters and thus easy to minimize by means of simple LMS type 
algorithms. A block minimization algorithm with a convex corresponding 
cost function has been proposed in [60]. The ability of this algorithm to 
open the eye pattern of the signal after approximately 300 iterations is 
shown in figure 14. However, this algorithm requires the storage of a large 
number of samples before adaptation begins and is more complex than 
the classical LMS. Finally, another algorithm, the criterion with memory 
nonlinearity (CRIMNO) algorithm, utilizes an augmented Godard (p=2) 
function with additional terms that include the weighted autocorrelation 
lags of the equalizer output [63,110]. This transforms the memoryless non- 
linear Godard cost function into a nonlinear cost function with memory. 
The inclusion of memory into the cost function results in faster conver- 
gence of the CRIMNO algorithm as it is clearly demonstrated in figure 15. 
Furthermore, by properly adjusting the weights of the additional terms the 
CRIMNO algorithm is able to avoid convergence to local equilibria. 
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Figure 6" Complex Discrete Channel Examples. (From Hatzinakos, [81], 
with permission of Elsevier Science Publishers) 
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Figure 7" Convergence of the first three minimum phase and maximum 
phase cepstrum parameters of the channel with transfer function F ( z )  = 
(1 - 0.183z)(1 - 0.1987z-X)(1 + 0.656z-X). (From Hatzinakos and Nikias, 
[21], with permission of IEEE) 
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Figure 8: Mean square error convergence (top) and symbol error rate (bot- 
tom) vs number of iterations for a N = 31 tap linear equalizer with the 
channel example 1. S N R  = 20 dB for 4-QAM and 16-QAM, S N R  = 30 
dB for 64-QAM a) TEA with p -  q = 6 and $(n) - 1 b) �9 ,.a**[Pn(.)P(,~)] �9 
Stop-and-Go with 7 = 10-3, a = 1 for 4-QAM, 7 = 4 - 1 0  -4, a = 2.5 for 
16-QAM, and 7 = 10-4, a = 6 for 64-QAM. (From Hatzinakos and Nikias, 
[21], with permission of IEEE) 
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Figure 9: Distorted eye pattern (channel example 1) and equalized eye 
patterns of a 16-QAM signal constellation with various blind equalization 
algorithms. S N R  = 20 dB. Parameters for TEA and Stop-and-Go are as 
in figure 8. For Benveniste-Goursat, 7 = 10-4, c~ = 2.5, k l  - -  3 and k2 = 1. 
(From Hatzinakos and Nikias, [21], with permission of IEEE) 
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Figure 10: Distorted eye pattern (channel example 2) and equalized eye 
patterns of a 16-QAM signal constellation with various blind equalization 
algorithms. S N R  = 25 dB. Parameters are as in figure 9. (From Hatzinakos 
and Nikias, [21], with permission of IEEE) 
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Figure 11" Mean square error performance and eye patterns of different 
blind decision feedback algorithms with 64-QAM and channel example 
1.(From Hatzinakos, [81], with permission of Elsevier Science Publishers) 
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Figure 12" Contour diagram of the Godard cost function and mean square 
error convergence under different initial equalizer settings. 
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Figure 13: Mean square error convergence and eye diagram (16-QAM) of 
the Godard cost function with LMS optimization (top) and simulated an- 
nealing optimization (bottom). (From Ilow, Hatzinakos and Venetsanopou- 
los, [62], with permission of John Wiley & Sons, Ltd.) 
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Figure 14: Impulse response of complex channel (left) and eye diagram prior 
and after blind equalization (right) with the block minimization algorithm 
after 300 iterations with a block of 2000 samples. (From Kennedy and 
Ding, [60], with permission of the authors and of SPIE Publications) 



320  D. H A T Z I N A K O S  

0 

m 
-10 

~ -20 

-30 
0 2 4 6 

Frequency 

A 2 .| 

-i . 

0 2 4 

Frequency 

Dis t r ibu t ion  o f  Zeros  

o o 

o ~ )  o 

o 

o 

6 (~) 1992 SPIE 

0.1 

0.09 

0.08 

0.07 

0.06 

0.05 

0.04 

0.03 

0.02 

0.01 

0 
0 0:2 0:, 0:6 0:8 i 1.2 l., ~.6 ~.8 2 

Number of iteration 
xlO 4 

Figure 15: Channel characteristics (top) and residual intersymbol interfer- 
ence at the output of the CRIMNO equalizer of memory size M. (From 
Chen, Nikias and Proakis, [63], with permission of the authors and of SPIE 
Publications) 
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IX Summary 

An overview of the major approaches to the problem of blind deconvolution 
is given. Without loss of generality, the treatment of the problem focused on 
the blind identification and equalization of digital communication channels. 
In Table II, an attempt is made to classify the general characteristic of the 
five approaches presented in this chapter. It must be emphasized that this 
classification provides a statement of the average and not the individual 
behaviour of the algorithms in each approach. For example, it has been 
found experimentally that polyspectra algorithms in general converge faster 
than the Bussgang algorithms. Nevertheless, the convergence behaviour of 
each algorithm is highly dependent on the channel characteristics, choice 
of parameters, and equalizer initialization among others. 

Table II" General characteristics of blind deconvolution methods 

Complexity 

Relative 
Convergence 
Speed 
From 1 (low) 
to 3 (high 
Robustness 
to additive 
noise 
Restrictions 
to input 
data  dis- 
tribution 
Possibility 
of ill-con- 
vergence 
Channel 
Identifi- 
ability 

i. Bussgang 

i 
Low 

1-2 

non- 
Gaussian 

Yes 

Polyspectra 

High 

1 . 5 - 2 . 5  

G aussi an 
noise 

non- 
Gaussian 

Probabilistic 

High 

2-3 

' M i n i m u m  
Entropy 

Low to 
Moderate 

1-2 

non- 
Gaussian 

Yes 

Cyclic 
Spectrum 

moderate 

Stationary 
noise 

Restricted 

There are other blind deconvolution approaches in the literature that 
cannot be easily classified under the examined five approaches, such as 
references [111-114] among others. Nevertheless, a common characteris- 
tic of all existing blind deconvolution algorithms is their slow convergence 
compared to trained algorithms. Thus, a lot of research effort is directed 
currently towards the development of faster blind deconvolution algorithms. 
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I. INTRODUCTION 

Parametric modeling of signals and systems provides a compact descrip- 

tion of the underlying process and facilitates further processing of the data 

(e.g., in deconvolution or filtering problems). Most of the work in paramet- 

ric system identification however, relies upon the stationarily assumption 

for the observed signal, or equivalently, on the time-invariance (TI) of the 

underlying system. This assumption, although mathematically convenient, 

is not always valid for various signals encountered in several applications. 

Time-varying (TV) systems arise naturally in a variety of situations 

including speech analysis [1] (due to the constantly changing vocal tract), 

seismic processing [2] (due to earth's space-varying absorption) and array 
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processing (due to moving sources). Other examples include time-delay es- 

timation, echo cancellation, radar and sonar problems and many more ap- 

plications of system identification. The growing interest in time-frequency 

representations and TV spectral analysis (e.g., [3]) indicates the importance 

of nonstationary signal analysis. 

A major application of system identification and deconvolution appears 

in digital transmission through channels with multipath effects or band- 

width constraints. Intersymbol Interference (ISI) is present in this case, 

due to delayed copies of the transmitted signal arriving through the multi- 

ple paths, or due to the transmitter and receiver filters [4]. ISI is a major 

impeding factor in high-speed digital transmission and its effects can be 

significantly more severe compared with those of additive noise. Thus, the 

use of some channel equalization procedure is essential for the recovery and 

detection of the transmitted symbols. 

It is common practice in communication applications to assume that 

the intersymbol interference does not change throughout the transmission 

period, i.e., the channel is time-invariant (TI). In many cases however, ISI 

is induced by multipath effects from a changing environment, thus a time- 

varying channel has to be considered. Examples of TV channels (called 

frequency-selective fading links) include over the horizon communications 

[4] (due to random changes in the ionosphere), the underwater acoustic 

channel [5] (due to local changes in the temperature and salinity of the 

ocean layers) and microwave links [6]. An equally important application 

appears in radio transmission to a mobile receiver, as for example in cellu- 

lar telephony. In this case, the multipath effect from reflections at nearby 

buildings is constantly changing as the vehicle moves. In order to equal- 

ize these fading links, identification and deconvolution of TV systems and 

channels should be considered. This is the general topic of this work. 

The most popular approach for TV channel estimation and equalization 
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has been to employ an adaptive algorithm, in order to track the chanel's 

changing parameters [4, Ch. 6,7], [7]. Typically, a training sequence (known 

to the receiver) is transmitted at the beginning of the session so that the 

equalizer can adapt its parameters. After the training period, the equalizer 

usually switches to a decision-directed mode. In this mode, the previous- 

ly detected symbols are assumed to be correct and are fed back to the 

adaptive algorithm, to update the parameter estimates. In this way, the 

algorithm can follow the time variations, provided they are sufficiently slow 

in comparison to the algorithm's convergence time. 

Despite their popularity and simplicity, adaptive algorithms are derived 

under the stationarily assumption and do not take explicitly into account 

the TV nature of the channel. Thus, they can only be used for slowly 

changing channels and systems. Moreover, in the decision feedback (DF) 

mode they suffer runaway effects and divergence problems, whenever a 

deep fading or rapid change occurs. For this reason they require periodic 

retraining. 

In order to overcome these problems, further modeling of the channel's 

variations needs to be incorporated into the equalization procedure. A sec- 

ond, probabilistic approach would be to regard each TV system coefficient 

as a stochastic process. In this framework, the TV identification problem is 

equivalent to estimating these "hidden" processes. If the statistics of these 

processes are a priori known, Kalman filtering techniques can be employed 

to estimate the TV coefficients from input/output  data [5]. It is not clear 

however, how to estimate those statistics since the TV coefficients are not 

directly observed. Moreover, this as well as simpler random walk models 

rely on the random coefficient assumption, which is reasonable only when 

there are many, randomly moving reflectors in a multipath channel (e.g., 

ionospheric channel). It will not be valid for different setups, e.g., channels 

with occasional jumps or periodic variations. 
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A third approach, on which we will focus, is based on the expansion 

of each TV coefficient onto a set of basis sequences. If a combination of 

a small number of basis sequences can well approximate each coefficient 's 

time-variation, then the identification task is equivalent to the estimation 

of the parameters in this expansion, which do not depend on time. This 

approach transforms the problem into a time-invariant one and has been 

used for the estimation of TV-AR models in the context of speech analysis 

[1], [8]. However, the performance of these methods depends crucially on 

the wise choice of a basis set, which can capture the dynamics of the chan- 

nel's variations in a parsimonious way. Several polynomial [9], [10], and 

prolate spheroidal sequences [1] have been proposed in the past, although 

accompanied by no quantitative justification. 

Here, we defer the discussion on the choice of the basis sequences for 

Section V, where the wavelet basis is advocated for the general case. We 

motivate the basis expansion approach however in Section II, where we 

show that the mobile radio, multipath channel can be described by a pe- 

riodically varying model. Each TV coefficient is given as a combination of 

some complex exponentials. Thus, the use of an exponential basis in this 

framework, proves the usefulness and applicability of the basis expansion 

approach. 

Basis expansion ideas provide a valuable tool for extending RLS and 

LMS type adaptive algorithms to the rapidly varying systems case. More- 

over, they offer a framework into which the more challenging problem of 

blind or output only identification of the TV channel can be addressed. 

Blind or self recovering equalization procedures use output only informa- 

tion and therefore do not require a training period. Thus, they are useful in 

applications where no training sequence is available [11], [12], [13], [14], [15]. 

Examples include broadcasting to many receivers (e.g., HDTV broadcast- 

ing), where the transmitter cannot be interrupted to initiate new training 
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sessions, and multipoint data networks, where the cost of training each 

individual terminal point is prohibitive in terms of network management 

[16]. Blind methods (in the TI case) typically involve the minimization of 

criteria based on the signal's statistics in the place of the mean square error 

[11], [15]. Thus, they do not lend themselves easily to TV extensions, since 

the statistics in this case vary with time and cannot be easily estimated. 

In Section IV basis expansion ideas are employed to address the blind 

equalization problem for rapidly fading channels. Second- and fourth-order 

nonstationary moments and cumulants are used to recover the TV channel 

coefficients. Identifiability of the channel from these output statistics is 

shown and novel linear and nonlinear algorithms are proposed based on 

instantaneous approximations of the TV moments. The performance of 

these methods is studied and strong convergence of the proposed algorithm 

is shown. 

In an effort to keep the presentation as general as possible, we do not 

refer to any specific basis throughout these derivations. However, the choice 

of an appropriate basis set is crucial for the success of this approach. While 

for certain cases, the choice of the basis sequences is clearly dictated by the 

channel dynamics (e.g., mobile radio channel), for the general case it is not 

a trivial problem [8]. 

Motivated by the success of mulliresolution methods in signal and im- 

age compression, [17], [18], in Section V we study the applicability of the 

wavelet basis for the parsimonious description of the TV system coefficients. 

Wavelet expansions offer a time-scale analysis of the signal and provide 

information about global as well as local behavior at different resolution 

depths. The promise of multiresolution expansions of the TV coefficients is 

that most of their energy will be concentrated into the low-resolution ap- 

proximation, and hence the detail signals can be discarded without affecting 

the quality of the approximation. In this way a parsimonious approximation 
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to the channel's variations is obtained. 

While this approach can provide an acceptable overall approximation 

to the system's trajectory, it will not be able to track rapid changes or 

transient fadings which usually manifest themselves in the detail signal. 

Thus, some important parts of the detail signal have to be kept as well, 

similarly to image coding procedures. We should be able to locally "zoom 

into" the details when necessary (e.g., in an abrupt change or transition) or 

in other words, select the appropriate resolution depth locally, depending 

on the variability of the system's coefficients. 

In Section V we formulate this problem as a model selection problem 

and use information theoretic criteria [19] or hypothesis testing procedures 

[20] to automatically select the appropriate resolution depth. The proposed 

algorithm incorporates maximum likelihood, or simpler blind methods, and 

provides a general framework for the estimation of TV systems, where no 

specific a priori knowledge on the nature of the time variations is assumed. 

II. BASIS EXPANSIONS AND TV CHANNELS 

Let us consider a general TV-ARMAX system described by the model 

y(n) - ~ ~ a ( n ; k ) y ( n - k ) + ~ - ~ b ( n ; k ) w ( n - k ) +  c (n ;k )v (n-k)  , (1) 
k = l  k=O k=O 

where v(n) is the system's output, w(n) is the input and the third term 

of the RHS represents observation noise. Notice the explicit dependence of 

the parameters a(n; k), b(n; k), c(n; k), oil time, since tile system is TV. In 

a communications framework, y(n) represents the received signal, w(n) the 

transmitted symbols and v(n) the channel noise. While eq. (1)is a rather 

general parametric description of the fading channel, simpler models are 

sufficient for many applications. For example, in most cases the additive 

noise is assumed to be white and Gaussian, hence the third term in the 
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Figure 1: Actual Setup 

RHS of eq. (1) reduces to v(n). Moreover, in multipath channels with no 

reverberation, the first term may also be absent, resulting in an FIR model 

q 

v(~) - ~ b(~; k)w(,~ - k) + v ( , )  . (2) 
k = 0  

In this work we focus on the equalization problem and some results are spe- 

cialized for the model of eq. (2). However, we frequently discuss extensions 

to the general case of eq. (1). 

Equation (2) is indeed a general discrete-time equivalent model for a 

fading channel as discussed next. Consider the setup of Fig. 1 for digital 

transmission through a fading link and let he(t; r) be the overall impulse 

response of the the TV channel in cascade with the transmitter 's spectral 

shaping filter 1. The received signal is then 

(:x:) 

re(t) -- E w(k)hc(t;t- kT) + v~(t) , (3) 
k--0 

where w(k) is the discrete-time symbol stream, T is the symbol period, and 

v~(t) is additive Gaussian noise. Throughout this chapter, we will consider 

the information symbols w(n) to be i.i.d., equiprobable, drawn from a QAM 

2 e.g. for the 4-QAM case, w(n) can take the constellation with variance (rw; , 

values X/(r2/2 (a + j/3), where a , / 3 -  +1; In general, w(n) can take a 

1 We  use  t h e  s u b s c r i p t  c to  d e n o t e  c o n t i n u o u s - t i m e  s igna l s .  
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�9 [b(n;k) I 

Figure 2: Equivalent Discrete-Time Model 

finite number of distinct values w (m), m = 1 , . . . ,  M, on the complex plain, 

depending on the chosen constellation. 

After the receiver filter and sampler, we obtain the discrete samples 

o o  

yc(nT + to) - ~ w(k)bc(nT + 7"0; nT - kT  + to) + vr , (4) 
k=0  

where 7"0 is the transmission delay and be(t; r) is the convolution of he(t; r) 

with the impulse response of the receiver filter. The sampler has period T, 

since we deal only with symbol spaced equalizers here. 

The impulse response be(l; r) is infinite in general. However, it is com- 

mon practice in communication literature, to truncate it at some order q 

(FIR approximation) and thus arrive at the equivalent discrete-time model 

of eq. (2), (see also Fig. 2). 

We should notice here, that both TV models of eq. (1) and (2) have 

too many degrees of freedom to be practically useful. In other words, the 

estimation of the TV parameters in eq. (1) or (2) without any further 

constraint in their variation, is an ill posed problem. To understand why, 

consider the simpler model of eq. (2) and assume that both input and 

output data are given (w(n) and y(n) respectively). Then, for every new 

data point {y(n), w(n)} received, one more equation is obtained with q + 1 

unknowns {b(n;k)}~= o. Therefore, the system of equations generated by 

(2) is underdetermined and does not lead us to a meaningful solution. 
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Thus, further modeling of the system's time-history is required in order 

to obtain a more constrained and parsimonious description, in order to 

facilitate the identification task. In this work, we propose to expand each 

TV system coefficient onto some basis sequences fl(n), I = 1 , . . . ,  L 

L 

b(.;  ~) - ~ 0~,/,(~) . (5) 
1=1 

In this way, the system is only parametrized by the expansion coefficients 

0kt, k - 0 , . . . , q ,  I - 1 , . . . , L  and a drastic reduction in the number of 

unknown parameters is achieved. However, one might question the quality 

of approximation to the actual coefficients provided by (5) and hence, the 

applicability of this approach. Indeed, the wise choice of the sequences 

ft(n) is crucial for the success of this method. Of equal importance is the 

choice of the appropriate expansion order L [21]. Although here, we defer 

the discussion on the basis selection for Section V, we would like to motivate 

our approach by studying the mobile radio channel in more detail. It can be 

shown that this channel is naturally modeled by equations (2), (5), where 

the basis sequences are complex exponentials. This serves as a motivation 

for the usefulness and applicability of the basis expansion procedure. 

A. THE MOBILE RADIO CHANNEL 

Let us consider a radio channel with multipath, where the receiver is on 

a constantly moving platform while the transmitter and the reflectors are 

fixed (see Fig. 3). The transmitted signal is 

~ ( t )  - R e [ ~  w(k)g~(t - k T ) ~ ' :  o~] , 
k 

(6) 

where fc is the carrier frequency and gc(t) is the spectral shaping pulse. 
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Figure 3" Multipath in Mobile Telephony 

Due to multipath, several delayed copies of so(t) arrive at the receiver 

L 

r e ( t ) -  E At( t ) s r  r l ( t ) )+  vr , (7) 
k = l  

where rt(t) and At(t) are each path's delay and gain, respectively (notice 

that they change with time, since the receiver is moving). Substituting (6) 

into (7) we obtain 

~(t)  = Re[v~(t)~ ~ - ~ ]  + ~( t )  , (8) 

L 

y~(t) - ~ A , ( t )~~o~ ' (~ )  ~ ~(k)g~(t  - kT  - ~,(t)) . (9) 
1=I k 

where yr represents the complex envelope. At the receiver, the signal 

passes through a filter matched to the transmitter's spectral pulse and is 

then sampled every T seconds. The discrete time output after the matched 

filter and the sampler is given by 

y(n) - f yc(t)gr - nT)dt . (10) 
J 
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Substituting (9) in to  (10) and assuming that Ak(t) ,~ Am, rz(t) ~ rm are 

approximately constant for a symbol period (a piecewise constant approx- 

imation), we obtain 

L 

y(n) - ~ A,,~e j2~l~'" ~ r g ( [ n -  k]T - r m ) w ( n ) +  v(n) , (11) 
i=1 k 

where ra(t ) is the (deterministic) correlation of the spectral shaping pulse. 

If we further approximate the path delay variation with a linear function of 

time, i.e., rm - Atn + ~0 (first degree approximation), and truncate ra(t ), 

for Itl > MT,  and some M > 0, we obtain 

n+qM L 
y(n) - Z ~ [ r a (kT-  rt')Ak"]eJ2'~l~(~'"+~r)w(n - k )+  v(n) , (12) 

k=n--qM /--1 

for an order qM. Furthermore, if we observe that the term in square brackets 

is approximately constant with n (compared with the rate of change of the 

exponential), we arrive at the following equivalent discrete-time model: 

q 

y(n) - Z b ( n ; k ) w ( n -  k) + v(n) (13) 
n = 0  

L 

b(n;k) -- ~ O a ,  e j"''~ , (14) 
i=1 

for some complex constants 0nk, some order q and fi'equencies c~z = 2~'fc)~t. 

The model of equations (13), (14) is identical to that of (2), (5), with the 

exponentials used as basis, i.e., ft(n) - e j`~'n. 

Thus, the mobile radio channel, due to the high frequency modulation 

inherent in the transmitted signal, can be considered as a discrete-time, 

linear, periodically varying channel. Each TV coefficient is given as a lin- 

ear combination of exponentials as shown in (14). This derivation reveals 

an interesting application which fits rather nicely into the basis expansion 

approach used in this work. This analysis however, is valid only when the 
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multipath effect is caused by a small number (q = 1,2, or 3) of distinct re- 

flectors (as in cellular telephony). It does not cover channels with many ran- 

domly moving reflectors (random channel), or channels with abrupt jumps, 

or even smooth but non-periodic variations. A more general multiresolu- 

tion approach is discussed in Section V, to deal with these cases. In the 

meanwhile, we consider fz(n) to be given and focus on tile estimation of 

the expansion parameters 0kz. 

Notice that the decomposition of eq. (5) transforms the problem into 

a time-invariant one. Indeed, the coefficient's time-variations are captured 

by the sequences ft(n) while the parameters Okt do not depend on time. 

Adaptive and blind methods for the estimation of 0k~ are proposed in the 

sequel, by exploiting the general framework of equations (21, (5). For the 

case of the mobile radio channel, the frequencies at have to be estimated 

as well, in order to completely characterize the channel. We will not deal 

with this issue here; the interested reader is referred to [22], [23], where 

cyclostationarity tests are used [24], to address this problem. 

III. ADAPTIVE ESTIMATION / EQUALIZATION 

Let us consider tile following ARX system 

p q 

y(n) - E a(n; kly(n - k) + ~ b(n; klw(n - k) + v(n) , (15 / 
k - 1  k=O 

where the TV coefficients a(n; k), b(n; k) are given by the expansion 

L L 

a(n" k) - E 8~ al) f l (")  b(n" k) - E A(b) , , , "kt fz(n) . (16) 
/=1 /=1 

Then by substituting (16) into (15), we obtain the following input/output 

relationship, 

q L 

y(n) - E E O~? )[f '(n)y(n - k)] 
k = 0 / = 1  
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q L 

+ E E O ~ b t  ) [ f ~ ( n ) w ( n - k ) l + v ( n )  , n -  1 , . . . , N .  (17) 
k - 0  I=1 

Typically, at the beginning of each session a known sequence is transmitted 

to serve as a training pattern for the receiver's equalizer. Thus, during the 

training mode, w(n)  and y(n) are given and eq. (17) represents a linear 

(a) 0(bl) It can be written in vector model w.r.t, the unknown parameters 0kt , . 

form as 

y(n) - f T o  + v(n) , n -- 1 , . . . ,  N (18) 

where _0 - [0~). . .0~L ) 0~bl)...0(q~] is the parameter vector and fT _~ 

[ f l (n )y (n  -- 1 ) . . . f L ( n ) y ( n  -- p) f l ( n ) w ( n ) . . . f L ( n ) w ( n  -- q)] is the data 

vector (T stands for transpose). The formulation of eq. (18) transforms 

the TV channel estimation task into a classical linear regression problem. 

Then, the optimum estimator for __0 (ill the mean-square sense) is provided 

by minimizing the modeling mean-square error, 

_0- arg min E{iy(n)- fT_012} . (19) 

Following standard procedures (e.g., [25]), the minimizer of eq. (19)can be 

estimated adaptively by combining gradient descent methods and stochastic 

approximations. The resulting "LMS type" adaptive algorithm is given by 

the simple iteration 

where the error is 

_0(n -4- 1) - _0(n) + tte(n)f,~ , (20) 

- v ( n )  - . (21) 

The algorithm should be initialized with _0 - 0, and the stepsize # should 

be a small positive number; # represents a compromise between fast con- 

vergence and increased "excess error" in the steady state. 
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An adaptive solution with faster convergence and no excess error is 

possible, based on Recursive Least Squares (RLS) methods (see for example 

[25]). In this formulation, eq. (18) is written in matrix form as 

y = F _ ~ + v  , (22) 

_ zx zx Iv(l). v ( N ) ]  T and_O can where F h [fl .- .fN] T ,  Y -  [y(1). . .y(N)] T v - . .  , 

be estimated by minimizing a Least squares criterion, 

_0 - arg min [ l v T  ,v] . 

0 

(23) 

Under the white Gaussian assumption for v(n), eq. (23) coincides with 

the maximum likelihood estimate of_0, and the procedure is efficient. The 

solution is given in closed form by 

_0 - (F*TF)tF*Ty (24) 

where �9 stands for complex conjugation and t denotes the pseudoinverse. 

As commonly done in equalization problems, Recursive LS (RLS) can be 

applied to (22) to reduce computations as well as memory requirements [4]. 

In Table 1, we provide the RLS algorithm for the TV model of eq. (17). 

The proposed algorithms adaptively estimate the expansion parameters 

0~), 0~bz ). Although they are applied to a TV environment, the formulation 

of eq. (18) is very similar to the general linear TI approach. Thus, questions 

regarding the performance and asymptotic behavior of these algorithms can 

be answered following standard techniques. For example, consistency of the 

LS estimate can be shown under certain conditions as discussed in [26], [27]. 

In the TI case, adaptive equalizers usually switch to a decision feedback 

(DF) mode, after the training period is over. Thus, it would be of interest 

to examine whether a decision directed approach is also applicable to the 
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Initialization" P ( 0 ) -  ~I, 0 ( 0 ) - 0 ,  0 < A < 1 

Recursion: K ( n ) - ,  ,X-' P(n- 1)f,, 
I+A-'f,~TP(n- 1)f, 

c~(n) - y(n) - _~T (n - 1)fn 

~(n) - _0(n - 1)+  c~(n)K*(n) 

P(n) = A-1p(n - 1 ) -  A-1K(n)f,*~Tp(n- 1) 

Table 1: RLS adaptive equalizer 

TV case. In this way, the equalizer will be able to even track slow variations 
(a) 

in the expansion parameters 0kt , O~bt ) 
During normal transmission, both in the TV and TI case the symbols 

w(n) are not known to the receiver, to be used in the algorithm's iteration. 

To overcome this problem, the decoded symbols tb(n) are used in place of 

the true ones. If the probability of decoding errors is sufficiently small, the 

algorithm will still converge to the true parameters. 

In the current setup, the goal is to decode ~b(n) and update the estimate 

_0(n), given the previously decoded symbols t~(n), t ~ ( n -  1) , . . . ,  t ~ (n -  q); 

to this end every possible value for t~(n), is hypothesized, and the one 

which minimizes the error between the estimated and received signal y(n) 
is selected. Then, ~(n) is computed through the LMS or RLS algorithm 

using the data y(n) and tb(n). The algorithm is summarized in Table 2. 



348 MICHAIL K. TSATSANIS 

goal: given to(n - 1) , . . . ,  to(n - q), ~(n - 1) estimate tO(n), _O(n). 

step 1" f o r m -  1 , . . . , M  

hypothesize: to(n) - w (m), and compute" 

e(m)(n) - y ( n ) -  ~L=I Ooz(n-- 1)[ft(n)w (m)] 
-- Eqk=l zL=x Okz(n - 1)[f,(n)to(n- k)] 

step 2" Pick mo which minimizes the error le(m)(n)12 and set 

~ ( n )  - w("~0). 

step 3" Update _0(n) through the recursion of Table 1 or Equation 

21, using to(n) , . . . ,  t o ( n -  q), _O(n- 1). 

Table 2" Decision-Feedback Equalizer 

This algorithm provides a simple "nearest neighbor" rule to detect the 

transmitted symbols, on top of estimating the parameter vector _0. In this 

way, the actual equalization of the channel is combined with the estimation 

procedure. However, this rule is not efficient and possesses no optimali- 

ty. Superior results should be expected if maximum likelihood detection 

procedures are employed. 

Under the Gaussianity assumption for the additive, white noise v(n), 
the negative log-likelihood of the data (after dropping unnecessary terms) 

can be written as 
N 

L(_0) - Z I v ( n )  - i f _e l  2 . ( 2 5 )  
n--1 
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Thus, if some estimate _0 of the channel's parameters is provided, the ML 

ZX[w(1) . w is given by estimate for the input vector w -  , . . ,  (N)] T 

N 

*ML - -  arg min ~ l u ( n )  - f _Ol = 
r t= l  

W 

(26) 

where the elements of vector w are allowed to take all possible QAM values. 

By exploiting the fact that the cost function in (25) is cumulative, dynamic 

programming methods (such as the Viterbi algorithm) can be applied, and 

the optimal w can be recursively computed [4]. 

Similarly to the TI case, the Viterbi decoder can be coupled with an 

adaptive channel estimator (e.g. Table 1) which should operate on the data 

with a delay D equal to the Viterbi decoding delay. In this way, both output 

and (decoded) input data will be available for the algorithm's operation, 

(see [4]). 

Both the Viterbi approach and the algorithm of Table 2, similarly to all 

decision directed schemes, are nonlinear procedures and will not converge 

to the true parameters unless a good initialization point is provided. Thus, 

either initial training or some self-recovering procedure is always needed. 

For the cases where training is too costly, or simply not available due to the 

network's architecture, it would be of interest to examine the applicability 

of blind equalization methods in this fading environment. Successful blind 

recovery of TV channels could potentially enable the integration of fading 

links and mobile terminal points in multipoint or broadcast data networks. 

This topic is discussed next. 

IV. BLIND CHANNEL ESTIMATION 

While the importance and usefulness of blind deconvolution methods is 

widely recognized in the TI case, and self-recovering equalizers are becoming 
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increasingly popular, no such procedures have been developed (to the best 

of our knowledge) for rapidly varying systems. In this work we attempt to 

fill this gap and propose blind equalization algorithms for fading channels. 

In the TI case, blind methods typically exploit relationships and proper- 

ties of output statistics in order to recover the unknown channel's impulse 

response or derive the equalizing filter [16], [13]. They solve the problem 

in the statistics' domain, after estimating them from the given data. Ex- 

tension of this general philosophy to the fading case faces a number of 

difficulties, associated with the TV nature of the channel. 

The first problem involves the choice of the appropriate statistics which 

contain sufficient information to recover the system's TV impulse response. 

In other words, the statistics used should guarantee unique identifiability 

of the TV channel. The second difficulty arises when trying to estimate 

these TV statistics. Apparently, since they change with time, they cannot 

be estimated through conventional time-averaging. 

The identifiability problem is studied next. We show that higher-order 

moments are needed to uniquely characterize the channel, while the estima- 

tion question is discussed later. In this part of the work, we concentrate on 

the FIR channel of equations (2), (5). Extensions to more general ARMA 

systems presents an interesting future problem. 

A. TV MOMENTS AND CUMULANTS 

Similarly to the TI case, we will use second- and higher-order moments 

and cumulants of the received signal. Let us define the (k + L)th moment 

of y(n) as 

mkly(n; r l , . . . ,  rk+z-1) 

k 
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x[y(n + rk) . . .y(n  + vk+i-1)]} (27) 
J 

i 

where the subscripts k and I denote the conjugated and unconjugated parts 

in the expectation. Since some modulation schemes are better described 

by complex constellations, we develop the proposed methods for complex 

channels and signals. Notice the explicit dependence of the moments on n, 

since y(n) is nonstationary. According to (27), we can define two different 

second-order correlations of y(n), namely 

mo2v(n; T) zx E{y(n)y(n + v)} , (28) 

m,l~(~; ~) -~ E{v'(n)v(n + ~)} , (29) 

depending on the number of conjugated factors in the product. In a 

communications setup, the moment defined in (28) is rather useless, s- 

ince it is identically zero for most signal constellations. For example, for 

the popular 4-QAM or 16-QAM constellation, one can easily check that  

mo2y(n; 7") - m2oy(n; r) - 0 due to symmetry. Thus, we concentrate on 

the moment defined by (29) in the sequel. 

Using the definition (29) as well as the modeling equation (2), it can 

be shown that the TV correlation is related with the channel's impulse 

response in the following way, 

q 

- ~ (T)  , (30) . ~ ( ~ ;  ~) ~ ~ b'(~; k)b(~ + ~; k + ~) + ~ 
k = 0  

~E{ lw(n) l  2 2 where 71Xw- } - O'w, provided that the input w(n) is i.i.d, and 

zero-mean. Equation (30)indicates  that cxxv(n;r) contains information 

about the TV channel. In the next subsection however, it will become clear 

that  this information is not sufficient to recover the TV impulse response. 

Thus, higher-order statistics of y(n) have to be used. 
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Most signal constellations are symmetrically distributed around zero, 

hence third order moments  (and in fact all odd-order moments) are iden- 

tically zero. For this reason we resort to fourth-order moments  defined 

a s  

m22y(n; n ,  7"2, 7"3) ~- E{y" (n)y" (n + T 1)y(n -}- T2)y(7/ --1- 7"3) } . (31) 

Notice that  conjugation is not always necessary ill the fourth order case. 

For example, 

mo4u(n; rl ,  r2, 7"3) zx E{y(n)y(n + 7"l)y(n + r2)y(n + 7"3)} , (32) 

will be non-zero for many cases (e.g., for the 4-QAM constellation we can 

check that  E{w4(n)} = -711,o ~: 0). For cases where eq. ( 32 ) i s  zero 

however, we have to use the moment  of eq. (31). 

Higher than second-order moments  are not related to the impulse re- 

sponse in a straightforward manner as in (30). For this reason, different 

statistics called cumulants have been used in system identification problem- 

s. While the second-order cumulant of a zero-mean process coincides with 

the autocorrelation, 

c , 1 ~ ( - ;  r  - m , , ~ ( , , ;  ~) , (33) 

higher-order cumulants are defined as combinations of moment  products. 

For the fourth-order case, cumulants are defined as 

Co4y(n; 7"1 7"2 7"3) zx , , - roomy(n;  r i ,  ~-~, r~) - m o ~ ( , ,  + T~; r~ - ~ ' ~ ) m o ~ ( - ;  ~'1) 

- m o ~ , ( , , ;  ~ ' ~ ) m o ~ y ( -  + r , ;  ~-~ - ~'~) 

- mo2y(n; r3)mo2u(n + rX ; 7"2 -- 7"1), (34) 

o r  

c22y(n; n ,  r2, r3) 
A 
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(35) 

depending on the use of conjugation. More general definitions and proper- 

ties of cumulants can be found in [28]; a recent tutorial is [29]. Notice that  

for many constellations only the first term in the RHS of (35) is nonzero 

and the cumulant coincides with the corresponding moment 

c0,~(~; ~x, ~ ,  ~ )  - m0,~( . ;  ~x, ~ ,  ~ )  �9 (36) 

Similarly to the second-order case, one can show using the cumulant defi- 

nitions and (2) that  

C04y(n; T1, 7"2, 7"3) 

q 

k = 0  

• b(~ + ~ ;  k + ~ ) b ( ~  + ~ ;  k + ~ )  , (37) 

c22y(n; n ,  r2, r3) 
q 

- ~ :  ~ b ' ( ~ ;  k)b'(~ + ~,;k + ~,) 
k = 0  

• b ( .  + ~ ;  k + ~ ) b ( ~  + ~ ;  k + ~ )  , (38) 

under the i.i.d, assumption for the input; 722w and 704~ represent the cu- 
/x 

mulants of the input and are given by 704w=c04w(0, 0, 0) - E { w 4 ( n ) } -  

zx (0 0 0) E{Iw(n)l 4} 2a 4 E { w 2 ( n ) }  2 N o -  3 E { w 2 ( n ) )  2 and 7 2 2 w - C • 2 :  , , - - - �9 

tice that  the additive Gaussian noise does not affect the cumulant of the 

received signal, because Gaussian processes have all cumulants identically 

zero for any order greater than two. 

Equations (30), (37) and (38) relate the output statistics with the sys- 

tem's parameters and form the basis of many blind estimation techniques. 

In the TI case, the output statistics are typically estimated from sample 

averages; then the system's parameters are selected so that the t h e o r e t i c a l  

cumulants computed by eq. (37), or (38) best match the ones estimated 
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from the data. Such cumulant matching procedures have been successfully 

applied to output-only ARMA identification [30], while optimal variations 

have been reported in [31], [32]. In order to employ cumulant matching 

approaches in the TV case, we have to guarantee that  the TV coefficients 

are uniquely identified from these statistics. Otherwise, the minimization 

of such criteria would not lead to a meaningful parameter  estimate. This 

issue is discussed next. 

B. IDENTIFIABILITY OF TV CHANNELS 

Let us consider the channel of eq. (2) where the TV coefficients are 

given by (5 ) for  some known sequences fi(n), l -  1 , . . . ,  L. We wish to ex- 

amine whether second-order statistics are sufficient to uniquely characterize 

the parameter  vector _0; i.e., whether there is an one-to-one relationship be- 

tween 0 and the output  correlations Clly(n; 7"10 ). The answer is negative, 

as explained in the next proposition. 

P r o p o s i t i o n  1 : Given the model of (2), (5), with i.i.d, input w(n), there 

ezist parameter vectors 0 (1) ~: O_ (~ such that 

c,,,,(~; rl_O (~ - C l l y ( n ;  viE (1)) Vn, r (39) 

0 .  

As a simple counterexample, which proves tile validity of proposition 1, 

consider a system 0 (~ with two TV coefficients (q - 1), given by two basis 

sequences (L - 2) as follows, 

b(~ - fx(n) + f2(n) , b(~ 1) - 0 .5f l(n)  + 0.5f2(n) . (40) 

One can show that  this system has identical autocorrelation with the system 

_0 (x) given by 

b(X)(n;O) - 0.5fx(n) + 0.5f2(n) , b(1)(n; 1) - fx(n) + f2(n) . (41) 
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Indeed, from eq. (30) it is true that 

c~y(.;OlO (~ - -r~x.[Ib(~ 0)1 ~ + Ib(~ 1)121 

= -n,w[lb(X)(n; 0)i 2 + Ib(~)(n; 1)121 - c~.v(n; 01R(~))(42) 

and 

C l l y ( r / ;  110 (~ - 711w[b(~176 + 1; 1) 

: " [ l l w  [ b ( 1 ) ( n ;  O)]*b(1)(n "l- 1; 1 ) -  C,,y(n; 1LO(')) (43) 

resulting in identical second-order statistics for every time-point. In order 

to further identify the cause of the identifiability problem, let us express 

output correlations as a function of the parameters _0, using (30), (2) and 

(5). 

c ~ ( . ;  ~[0) 
q 

k=O 

q L 

k - O  11,12-1 

L 

= 7 1 1 w  E ~' "(')xot'xt' , 1,). [/,: (n)f,~(n + r)] + ")'live(T) (44) 
11,12=1 

where ,.(r) (11,12)~ * '~110 Zqk=o[OklOk+r,12]. Notice that clly(n; riO_ ) depends on 

the parameters only through the quantity p(*) (Ix,/2) If we think of 0kt as "110 

the impulse response (indexed by k) of an FIR vector multichannel system 

with l - 1 L channels then -(*) (11,12) corresponds to the cross-correla- , �9 . . ,  , e l l  8 

tion between channels ll and 12. Thus, similarly to tile the multichannel 

case, identifiability of_0 cannot be guaranteed from output correlations (see 

e.g., [33]). For example, if all L channels have a common zero, then all auto- 

and cross-spectra contain this zero, along with its mirror image (w.r.t. the 

unit circle). Hence, this zero can never be resolved. In conclusion, Proposi- 

tion 1 shows that  second-order statistics are inadequate for estimating the 
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TV channel and thus motivates the use of higher-order moments. It would 

be an interesting research problem to study certain fading channels and 

examine whether natural constraints appear on the position os their zeros 

or spectral nulls. Under certain assumptions, identifiability may be possi- 

ble from autocorrelation information and the use of higher-order cumulants 

can be avoided. 

In an effort to address the most general case here, we use second- and 

fourth-order information to recover the TV system. Thus, we wish to raise 

the identifiability question in the context of fourth-order cumulants. The 

following proposition shows that  under some mild conditions, fourth-order 

cumulants are sufficient to uniquely characterize the channel up to a scalar 

phase ambiguity. 

P r o p o s i t i o n  2 : Given the model of (2), (5), with i.i.d, input drawn from 

a known constellation, assume that: 

(AS1)  fl(n) are linearly independent sequences of n 

i.e., 

1 N ift(n)l.~ < 0 < limN--.oo ~ Y~n=X 

with finite power, 

(AS2)  for every fixed Vl,T2, V3, the product sequences ft ,(n)fz2(n + rl) 

f~3(n + r2)ft ,(n + ra) are linearly independent and of finite power 

for l < lx <12 <13 <14 < L. 

Then, for_O (1) :/: _0(~ jr and r  krr/2, it holds that" 

(i) :t some n, rx, 7"2, 1"3 such that 

(ii) and, 

co4y(n; rx, 7"2, r3l_O (1)) - co4u(n; rl,  7"2, 7"310 (~ r 0 , 

N q 
1 

E E 
n - - q + l  r l  , r 2 , r a - " - q  

(45) 

I=o~(-; n ,  r2, r~10(~))-co~(n; n ,  r~, r~l@(~ ~ ~ 0 

O (46) 
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Before proceeding to tile proof of Proposition 2, let us mention that ampli- 

tude and scalar phase ambiguities are inherent in all blind methods since 

there is no access to the input. Usually, in practice, phase ambiguities are 

handled by encoding information in the symbol's phase differences, instead 

of the phases themselves (e.g., differential PSK modulation). Within this 

phase ambiguity however, Proposition 2 proves identifiability of the channel 

in part (i), and in part (ii) shows that the cumulant difference is present 

throughout the data record, i.e., it is a sustained sequence of n, of finite 

power. (AS2) on the linear independence of the basis sequences holds for 

most practical problems (see [22] for equivalent conditions on periodically 

varying systems). 

Proof: We follow the philosophy of the proof of Proposition 1 

and establish the equivalence with a multichannel identification 

problem. Similarly to (44), we can express the output cumulants 

as functions of the parameters 0kt as follows 
L 

12 13, 14) C04y ( n ; 7"1__0 ) -- ~/04w t;048/~,'/1, , 
ll,12,13,14=l 

• [fla(n)fi:~(n + 7"l)ft3(n + "r2)ft4(n + 7"3)] 

(47) 

where Co4o-(z) ( 1 1 , 1 2 , 1 3 , 1 4 )  - ~ = o  Okt, Ok+r,,Z20k+T2,t30k+r3,t~ . I f  

we consider again Okz as a multichannel impulse response, we 

identify _(z) Co40(/1,12,13,14) as the fourth-order cross-cumulant of 

an FIR multichannel system. From (47) we see that for _0 (1) :# 

_0(~ jr we have 

 o4y(n; - co4y( ; zl_0r176 
L 

---- 704w ~ [C048(x)f (_r) (/1,17., 13, 14) -- ~'040(~ (Ix, 12,/3,/4)] 
m ll ,l:a,la ,14= l 
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• (-)]7~(~ + n)],~(. + ~ ) f .  (n + ~)].  (48) 

By appealing to the cumulant based identifiability results of 

multichannel systems [33], it follows that for some r ,  at least 

one of the differences in the RHS of (48) must be nonzero (oth- 

erwise 0 (1) --_0(0)). This, together with tile linear independence 

assumption proves part (i). 

Under the additional assumption (AS2), the RItS of (48) has 

finite power; then, so does the LHS, which completes the proof 

of the proposition. [] 

Similar identifiability results can be derived using the statistics c22v(n;_r]_O_O) 
in place of co4y(n;r_lO_ ). However, in many cases Co4y(n;r_lO_) is computed 

more easily because of eq. (36), and is thus preferred. More results on 

identifiability from the moments m22v(n; rl_0 ) can be found in [34]. 

Proposition 2 suggests that the minimization of a cumulant matching 

criterion can identify the correct model, i.e., if y(n) is generated by some 

unknown model _0 (~ and the cumulants co4v(n;rlO_) are given, then _0 (~ 

can be found as the minimizer over all 0 of the cost function 
w 

1 N q 

E 
n=q+l  r l  , r ~ , r a - - q  

Ic04~(~; n ,  ~ ,  ~ 1 0 )  - c0~.(n;  ~ ,  ~2, ~10r176 �9 

A major obstacle to this approach however, is the difficulty of obtaining 

estimates of the statistics c04v(n; rl, 7"2, 7"31_0 (~ from tile data. Since the 

statistics are TV, time-averaging approaches are not applicable. This prob- 

lem is addressed next. 

C. MOMENT MATCHING APPROACH 

In this section we propose moment matching criteria for tile estimation 
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of the TV channel. Let us consider the general cost function of the form 

JN(O_) = 

+ 

,,~ N q 
Z 

n=q+l  r1,r2,ra=-q 
I m o ~ , ( - ;  ~x, ~~, ~-~) - m o ~ , ( - ;  ~1, ~~, ,~1_o) I ~ 

(1 - .X) N q 
N Z Z Imlly (n; 7")- T//,11y(Tl; T[_0)[ 2 (49) 

n=q+l  r=-q 

for some ,k E (0, 1]. The reason for incorporating second-order statistics as 

well in (49) is to improve performance, as in the TI case (e.g., see [30]). A 

strong additive noise component in the received signal however, will exhibit 

considerable bias in the second order statistics of the signal. In this case we 

should chose ,~ = 1. The moments m04y(n; 7"1, r2, r31_0)[ and relay(n; r l0) in  

eq. (49) can be computed from (36), (44) and (49). 

In case  mo4u(n; 7"1, r2, ra[0)l is zero, the m o m e n t  m22y(n; 71,7"2, ral0)[ can  

be used resulting in a cost function 

JN(O) = 

+ 

)i N q 

Z ~ Ir~122y(rt; 71,7"2, 7"3) -- m22y(n ;  7.1,7.2, 7"310)i 2 
n=q+l  rl,r2,r3--q 

( I - a )  u q 
N Z Z [rally(n; 7 . ) -  , l i l ly(n;  TI0)I 2 (50) 

n=q+l  r=--q 

The moment m22u(n; rl, r2, ral0)[ in this case is computed from the corre- 

sponding cumulant as (see also eq. (35)) 

m22y(n; 7"1 7"2 7"3)/x , , - c ~ ( n ;  n ,  ~ .  ~ )  + m02~(,~ + ~ ;  ~ - ~ ) m ~ 0 ~ ( n ;  ~1) 

+ m ~ l ~ ( . ;  ~ )m~i~(n  + ~ ;  ~ - ~1) + m~l~(,~; ~ ) . ~ . . ~ ( n  + ~.; ~ - ~ ) .  

(51) 

after all lower-order moments have been computed; the cumulant c22v(n; 7"1, 

r2, r3)is given by (38), (5). In both cost functions (49) and (50), we resort to 

instantaneous approximations to estimate the signal's TV statistics. Thus, 

we use the trivial estimators y04(n; ry, r2, r3)~-y(n)y(n + rl)y(n + r2)y(n + 

ra) and yll(n; rl, 7"2, ra)~-y*(n)y(n + r) in place of the ensemble statistics 
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mo4v(n; rl ,  72, 7-3) and rally(n; r) respectively. With these substitutions the 

proposed cost function becomes 

)~ N q 

JN(_0) = ~ E E ]Yo4(n; rl, r2, r3) - mo4~(n; rl, r2,   1_o)12 
n = q + l  r l , r ~ , r 3 = - q  

N q 

+ (1 - A) E E lyal(n; r ) -  mla~(n'~lO)! 2 (52) 
N 

n = q + l  r = - q  

while (50) can be modified in a similar way. The proposed estimation algo- 

ri thm is based on the minimization of (52). The rational of this approach is 

that  instantaneous moment estimators, although rather noisy, are at least 

unbiased and hence can be written as 

(53) 
Y11(7/.; T) -- rnl ly(7/; ~1--~) + e11('~; T) . V. .  T.  (54) 

with zero-mean error terms. Equations (53), (54) represent a nonlinear 

regression problem which can be solved by the minimization of the energy 

of the error terms as suggested by (52). Despite the fact that instantaneous 

approximations are rather inaccurate, tile minimization yields surprisingly 

reliable results because a large number of them is collected in (52). Notice 

that equations of the form (53), (54), are gathered for every time point in 

(52). 

The proposed algorithm consists of the following more specific steps: 

s t ep  1: Compute yo4(n;rl,T~,r3), for all n = q + 1 , . . . , N ,  Tl,r~,r3 = 

-q , . . . , q  and ylt(n;  r) for n = q + 1 , . . . N ,  r = -q , . . . ,q .  

s t ep  2: Compute -0N to be the minimizer of the cost function (52) over _~, 

using some nonlinear optimization procedure. I::! 

Next we study the asymptotic behavior of this algorithm, in order to assess 

its performance and quantify earlier claims about its reliability. The next 
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proposition shows strong consistency of the algorithm under some assump- 

tions. 

P r o p o s i t i o n  3 If y(n) is given by the model of (2), (5) for some param- 

eter vector O_ (~ 6 O, where 0 is a compact parameter set, then under the 

assumptions of Proposition 2 and the additional assumption 

(AS4) If,(n)l < C < ~ ,  Vn, t, 

the minimizer of (52), O--N, is a strongly consistent estimator of 0_ (~ within 

a complex, phase ambiguity r  krr/2, i.e., 

O_ N w.p.1 o_(O)ejklr/2 , k 6 Z,  as N ---, cxD . (55) 

Proof: In order to show strong convergence of the minimizer 

-0u to _0(~ jo, we have to show that the cost function Ju(O) 

converges to some limit J(_0), uniformly in 0, as N ---, cx), and 

that O_(~ jO is the minimizer of J(0). Then, it follows that the 

minimizer of fiN(0) will converge w.p.1 to the minimizer of J(_0). 

To this end, we add and subtract m04(n; 7"1_0(~ ) to the first term 

of (52) as follows 

A N q 
~ ~ Iv0~(~;z) - m0~(~;Zl0(~ 

n = q + l  z = - q  

+m0,~ (n; zlO(~ - m0,~(~; zl0)l 2 
A N q 

n = q + l  r_.=- q 

)i N q 

n = q + l  z = - q  

2A N q 
+ ~ -  Z Z Re{[yo4(n;v) - mo4v(n;vlO(~ 

n = q + l  "r=--q 

x [mo4v(n;_rl 0(~ - mo4y(n; Vl_0)]* }. (56) 
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The first term in the RHS of (56) does not depend on 0 and is 

irrelevant to the minimization. The third term, as N ~ cx), can 

be shown to tend w.p.1 to 

lim 2A N q N....~ -N Z Z Re{E{yo4(n;z)- mo4u(n;zl_O(~ 
n=q+l  r = - q  

• [m04y(n;  7-10(0) ) -- rn04y(r/; Zl0)]* }, (57) 

uniformly in _0 E O; this is true due to (AS4) and the strong 

convergence results of [35]. But the limit in (57) is zero because 

the expectat ion is zero. Thus, the only term that  survives in 

(56) is the second one. Following a similar procedure for the 

second term in (52) we conclude that ,  as N ---. cx~, Jg(O) tends 

to the equivalent limit 

J(O) - lim 1 N q _ [ 

n=q+l  7"l,r2,ra=-q 

-mo4y(n; ~x, ~2, ~3 I__0) 12 
q 

+ ~ ]mxxy(n; 7"10 (~ - mlly(n; rl0)l ~] # 0 . (58) 
r = - q  

Comparing (58) with (49) and using Proposition 2, [cf. 46)] 

we see that  0(~ ~ (for r - kr/2) minimizes (58). Hence, the 

minimizer of JN(O) will converge to 0(~ jr w.p.1 as N ---+ cx~. 

Similar convergence properties can be shown if we use the moment  match- 

ing criterion of eq. (50), instead of (49), (see [34]). More discussion on 

the opt imizat ion procedure, as well as stochastic gradient versions of this 

a lgori thm can be found in [36]. 

We close this discussion with the remark that  the proposed algori thm 

is a nonlinear one, hence it is sensitive to the the initial choice of the pa- 

rameter  estimates.  No global convergence is guaranteed from an arbi trary 
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initial point, as the algorithm may be trapped in a local minimum. For 

this reason, alternative linear methods are needed to provide a satisfactory 

initialization. This motivates the derivations of the next section. 

D. LINEAR BLIND METHODS 

The combination of instantaneous approximations and basis expansions 

can provide linear solutions, if we allow some overparametrization in the 

description of the TV statistics. For example, second-order statistics can 

be linearly estimated if we use instantaneous approximations in the LHS of 

the expansion of eq. (44), 

L 

``xxo(ll,12)[fl, (n) f t~(n+r) ]+7xlv6(r )+el l (n ;  r), 
ix,12=l 

where el l(n;  v ) i s  the error term. By considering clio(Ix,12 ) as unknowns 

(overparametrization) in eq. (59), we obtain a linear LS problem. Once 

eq. (59) i s  solved for .~(r)(11 12) the TV correlations caay(n'r) can be "118  ~ ' 

reconstructed from (44). 

In order to linearly estimate _~ we need to combine second- and fourth- 

order information. In particular, we will use the q-slice of the of the fourth- 

order cumulants (i.e., c22v(n; O, k, q) ) similarly to the q-slice algorithm avail- 

able for the TI case [37]. From (38), the q-slice can be expressed as 

c22v(n;O,k,q)-722wb*(n;O)b*(n;O)b(n+ k ; k ) b ( n + q ; q )  . (60) 

while the q lag of the autocorrelation is 

2 b* , C11y(n; q) - o w (n" k)b(n + q; q) (61) 

Combining (60), (61) and (2) we can write 

c22y(n;O,k q) = 722Wb*(n'O)b(n+k;k)Clly(n;q) (62) 
0.2 
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Step 1" 

Step 2" 

Step 3" 

Step 4" 

Collect eq. (59) for n - q + 1 , . . . ,  N, and solve 

for dr)(/1,/2) using LS Repeat for every r - e l l  0 

- q , . . . , q .  

Estimate Oily(n; r) from ;(T)(11 /2) and (44) ~'110 , 

Combine (62) and (64)for n - q + 1 , . . . , N ,  and 

solve for &(k; 11,12) using LS. 

Compute 0kz from (65). 

Table 3: Linear blind equalizer 

where 

L 

722w ~ ~(k;l l ,12)[fT,(n)fz2(n+ k)clly(n;q)] , 
0"2 11, 2=1 

c~(k; 11,/2) - 001, 0kt~ (63) 

The q-slice of the fourth-order moment is given fi'om the corresponding 

cumulant from (51). Using instantaneous approximations for the LHS of 

(51) we obtain 

u* (-)u* ( - )u(-  + k)v(~ + q) - c2.~(~; 0, k, q) + c~,~(.; k)c~,~(.; q) 

+ e22(n;0, k,q) . (64) 

Then substituting (62) into (64) and treating the a 's as unknowns, we 

obtain a system of linear equations which can be solved using LS (where 

second-order statistics in eq. (64) have been already linearly estimated 

using eq. (59)). 
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Finally, given the estimates of a(k;ll,12), the parameters 0kt can be 

estimated from (63). To resolve the complex phase ambiguity we set w.l.o.g. 

arg(Ooo) =_ O. Hence, 0oo-  10ool- X/a(0; 0, 0)and Ok, is estimated as 

c~(k; O,/) 
- . ( 6 5 )  

The algorithm is summarized in Table 3. The application of recursive 

solutions to these LS systems in order to provide adaptive versions of the 

linear blind algorithm, is an interesting future problem. 

We close this discussion with a remark that throughout the blind ap- 

proach of this section, as well as the adaptive one proposed earlier, the 

basis sequences ft(n) are assumed to be a priori known. Moreover, even 

the expansion order L has to be fixed and given. Apparently, these assump- 

tions limit the general applicability of these methods. In the next section 

multiresolution ideas are employed to relax these assumptions. 

V. MULTIRESOLUTION DESCRIPTIONS 

Wavelet expansions offer compact representations of 1-D and 2-D signals 

and have been successfully applied to speech and image coding problems 

[17], [18]. They provide successive approximations of the original signal at 

different resolutions. In this way, most of the signal's energy is colnpressed 

into the coarse resolution component, resulting in a more compact descrip- 

tion. At the same time, local details (e.g., occasional edges or transitions) 

are preserved at some parts'of the fine resolution (or detail) components. 

Thus, these parts of the detail signal, together with the low resolution ap- 

proximation offer a compressed version of the signal's information. 

Prompted by the success and general applicability of wavelet methods in 

signal analysis, we propose, in this parametric fralnework, to use multireso- 

lution descriptions for the TV coefficients a(n; k), b(n; k). We expand each 
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a(n;kl =I =0 =I 
i I 

Figure 4: Dyadic Perfect Reconstruction Filter Bank 

TV coefficient onto a wavelet basis and keep the most significant expansion 

parameters. 

These coefficients (for fixed k) can be thought of as sequences of n, and 

the basis expansion approach of (16), as an attempt for a parsimonious 

description of these signals a(n; k), b(n; k). The basis expansion approach 

in TV modeling is thus analogous to transform coding in signal compression 

problems. In both cases, an orthogonal transform is desired, such that most 

parameters in the transform domain will be (close to) zero, while only few 

of them carry all the signal's information. 

From this analogy, and given the popularity of wavelets in signal analy- 

sis, we expect the proposed multiresolution methods to provide a satisfacto- 

ry approximation to most system trajectories, with smooth variations and 

even occasional jumps or transient changes. The advantages of wavelet cod- 

ing, compared with more classical DCT and Fourier methods, are exploited 

in this section, in a parametric setup. 

Let us define the problem more explicitly. Consider the channel descrip- 

tion of eq. (15) where w(n)is the transmitted signal and v(n) the additive 

noise. While up to now we considered general expansions of the form (16) 

to model the TV coefficients, we now focus on the wavelet basis. 

In discrete-time, multiresolution expansions are computed through mul- 

tirate filter banks [17]. Let us, for a fixed k, analyze the TV coefficient 

a(n; k) (or similarly b(n; k)) through the dyadic filter bank of Fig. 4. If the 
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filters ho(n), h~(n) fulfill certain conditions then perfect reconstruction at 

the output is possible (e.g., [38]). Then, the TV coefficient is given by the 

synthesis equation 

a(n', k) - E r - 2m) + E ~("')hl,r~ 1 (n - 2m) , (66) 
ITI m 

where ht(n) = ht(-n), l = 1,2; the first term in the RHS of (66) corre- 

sponds to the low-resolution part of a(n; k) while tile second to the detail 

signal. Equation (66) represents an expansion of a(n; k) onto a basis gener- 
- r( . , )  r ~t~d by translations of h0(n), hx (n). The expansion parameters S~ ,r, , -a .,, 

are given by the analysis equations (see Fig. 4) 

ff(,~) ,.m - E ho(l)a(2m- l; k) , (67) 
1 

(ak) r - E hi (l)a(2m - l ;  k) . (68) 
l 

We use subscript 1 in (67), (68) to denote the resolution depth (we ar- 

bitrarily assign a(n; k) to be the zero resolution depth [17]). Even coarser 

resolutions may be obtained by the repeated application of (66). In filtering 

terms, we further decompose the lower resolution branch of the filter bank 

in Fig. 4 as in Fig. 5. In the general case, the coefficients at resolution j 

can always be reconstructed from j + 1 similarly to eq. (66) (see also Fig. 

5) 

~!ak)3,n -- E ffJ-ai -kl)m~10(n - 2/7l)~- E ~Jak)+l,m]Zl( n -- 2 m )  . (69) 
m m 

We wish to expand the channel's coefficients up to a depth Jmax. In order 

to write a closed form expression we repeatedly back-substitute F! ak) for 

j = 1,..., Jmo~ - 1 in (69) ~nd (66). Xt ~n be ~how, th~t, following thi~ 

procedure, a(n; k) is expanded as follows, 

,]max 

m j - 1  m 
(70) 
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a(n;k)  (~a,,) /.(ak) 
,m %2,~rI 

.o zfe .o zf<> .o>- 
r  
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a(.;k) 
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Figure 5: Multiresolution Analysis to a Depth of J = 2 

Figure 6: The Noble Identity 

where the first term in tile RHS represents the approximation at resolu- 

tion J.~a~, while tile second term tile summation of J , , ~  detail signals; 

/t(0a"'=)(n), /t~J)(n)are the inverse Z-t,-~nsforms of the product t,'~nsfer 

functions H(J"~ and H~J)(z) deftned as 

H~'t'~"~)(z) - Ho(z)go(z2)  . . .  H0(z 2J .... - ' )  , (71) 

�9 a ( , ) j - a  H~J)(z) - Ho(z)Ho(z ' )  . .Ho(z  2'- )HI z" ) , j - 1 , . . . , amax �9 (72) 

The derivation of (70) is better understood in the frequency domain. It 

exploits a basic property of multirate systems called the Noble identity 

(e.g., see [38]). This identity allows the interchange of filtering and sub- 

sampling in multirate processing, and is depicted ill Fig. 6. It states that 

post-processing (after subsampling) by a filter H(z)  is equivalent to pre- 

processing by H(z2).  Using this property, the equivalence between Figures 
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a(.;k) 

_l Ho(z)Ho(z2 I._._~Q 

Ho(z)Hl(z2t--*- G 

Hi(z) "--"~~ 

fIo(z )fto(z 

fI,(z2) o(z 

 l(Z) 

a(.;k) 

Figure 7: Equivalent Structure 

5 and 7 can be easily established. 

In the general case of depth Jmax tlle repeated application of the noble 

identity results in an equivalent structure with Jm,,: + 1 branches with 

product transfer functions at each branch given by (71), (72). By expressing 

this filter bank operation in the time-domain we obtain (70). 

While the multiresolution nature of this analysis is rather appealing, we 

should keep in mind that (70) represents nothing more than an orthogo- 

nal expansion of a(n; k) onto a basis defined by translations of h~S"*X)(n), 

h~J)(n). Moreover, since no approximation was involved in this transfor- 

mation, the number of expansion parameters in the wavelet domain should 

equal the number of samples in the time-domain, so that no immediate ben- 

efit from this approach is yet evident. The promise is however, like in every 

other transform based signal description, that fewer significant parameters 

will exist in the transform domain, while most of them will be close to zero. 

Indeed, in the present framework, it is common practice to select the filters 

ho(n) and hi(n) as low-pass and high-pass respectively, so that most of the 

signal's energy is preserved in the low-resolution component (provided that 

the signal to be analyzed is generally a low-pass one). 

In the same way, the TV coefficient 's expansion in (70) should compress 
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most information of the system's  time-variation in tile low-resolution part  

(provided that  these variations have a low-pass nature). For special cases, 

where the t ime-variations have a band-pass or nonstat ionary nature, opti- 

mal analysis filters can still be designed as discussed in [39]. However, for 

most  cases encountered in practice, a general low-pass/high-pass decompo- 

sition will be sufficient. 

By keeping the low-resolution approximation only, a parsimonious de- 

scription of the TV coefficients is obtained. A more challenging problem 

however, is related to the accurate description of sharp transitions in the 

coefficients' t ime history. Unfortunately, this information is preserved in 

some parameters  of the detail signals. Thus, ill order to accurately model 

the global channel behavior, as well as the local events, the significant parts 

of the detail signal have to be retained as well. This is not a trivial task 

however, since the TV coefficients are not immediately observed. Model 

selection techniques are employed in the next section to address this issue. 

A. S E L E C T I O N  O F  R E S O L U T I O N  D E P T t t  

Let the received data  y(n), n = 0 , . . . ,  N -  1 be described by the model 

of (15), (70). In order to simplify the notation, let us gather all the parame- 

/.(bk) f(bk) r(~k) F! ak) ill a parameter  vector 0 -- [01 . . .  Ornax] T ters '..L~.~.m' ',j,m , "Jm.x,m' "S.m -- , , , 

and all t ransmi t ted  symbols in a vector w = [w(0) , . . . ,  w ( N -  1)] T. Then, 

if we subst i tute  (70) into (15) we obtain the modeling equation 

v( - )  - v( 10, w ) +  , 

where 

v( l_o, w)  
p 

k = l  m 

tv J m . x  

k = l j = . / m i ,  m 

(73) 
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q 

~Jrnax ,Tll 
k=O m 

q Jm~ 

'~j,m [hJ( m)w(n k)] . (74) 
k=O j = J m , ,  m 

Eq. (74) shows that the selection of tile significant expansion parameters 

is equivalent to a model selection problem. To understand why, assume for 

a moment that w is given (as in the training mode). Then, equations (73), 

(74) represent a linear regression and the choice of the significant terms of 

the RHS is precisely a regressor selection problem. Notice also that the 

expansion in (74) is limited to depths j = J,~i,~,..., J,~a~ for some drain 
:(bk) assuming that ".j,m - 0 for 0 < j < Jmin.  In this way the problem is 

simplified by exploiting prior information about the low-pass nature of the 

channel variations. To further eliminate unnecessary terms in (74) we use 

model selection procedures. 

By a model It = {ml, m 2 , . . . ,  rod(p)) we mean that some O's are a pr ior i  

set to zero, 

0/~ - -  [ O , . . . , O m l , O , . . . , O m : , O , . . . , O m d (  u ) , . . . ]  , (75) 

where d(/~) stands for tile number of tile non-zero O's and hence tile dimen- 

sionality of the model p. Thus, model # describes the data as 

v(n) - w) + v . (n)  (76) 

where y(n]O_u, w)is given by (74) after deleting all terms corresponding to 

zero elements of_0 u. 

In this setup, we seek a model selection procedure to determine the ap- 

propriate _0u, or equivalently keep only the important terms in (74). 
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B. M A X I M U M  L I K E L I H O O D  M E T H O D S  

The appropriate model structure can be selected by testing the likeli- 

hood of the data under each candidate model. The most widely used such 

procedure, derived from information theoretic considerations, is the min- 

imization of Akaike's AIC criterion [19]. Several consistent and optimal 

versions of this criterion have been studied in the literature [40], [41]. The 

AIC criterion is given by 

1 log(L u ) + 2  1 AIC(#{ ) - -2-~ , -~d(#{ ) , (77) 

where Lu~ is the maximized likelihood of the data under model #{. In the 

current setup, we have to distinguish two cases. If both y(n) and w(n) are 

known (training period), then Lu, is given by 

Lu, = maxL{y(n), w(n), n = O , . . . N -  1} . (78) 
0 - i t  i 

In the more general case, where w(n) is unknown, Lu, is 

Lu, = max L{y(n), n = 0 , . . . N -  1} , (79) 
W,0_u, 

where w can assume only a finite number of values depending on the signal 

constellation. We continue this discussion, using (79) since (78) represents 

a special case of the former. 

Under the white, complex Gaussian assumption for the additive noise, 

with uncorrelated real and imaginary parts of equal variance, the maximum 

log-likelihood is 

N - 1  
log(Lu, ) - m a x { - E  I ( lw' ~ )12 

w,_0 ~ 
- N log (w ,  0u , )  - N log , 

(8O) 

where 9(nlw,_Ou, ) - y ( n ) -  y(nlw, O_u,) represents the estimated residuals 

�9 2 given by ^ 2(w, 0 u ) is the ML estimate of (rv, given w, _Ou,, a" v _ , 

N - 1  
^~ 1 
a~(w'-0u') - N - d(#) E [~(w,-0u, )12 �9 (81) 

n = 0  
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Substituting (Sl) and (80)into (77) we obtain 

AIC(Iti) - 2 + 21ogTr + 2 min {log ^2(w 0 u )} 4 2d(#i) (82) w,0__., CrY ' - ' - - - - ' 7 -  ' 

or after deleting constant terms 

^2(w 0 u )} + ~ (83) AIC(pi) - 2 min {loga o , , N ' W,_0, 

The statistic of eq. (83) has to be computed for every candidate model, 

and the minimum has to be selected. This minimization is possible, at least 

in pronciple, since for a fixed w, the problem is linear and the minimizing 

_0,, is given by the solution of a LS system defined by (73), (74). Thus, a 

brute force method would involve an exhaustive search through all possible 

values of w, with a LS system solved, and log ^2(w (ns) a v ,0u, ) COlnputed at 

each value. Then the AIC is given by 

A I C ( # i ) -  2 min{l~ b 2 ( W w  , _~LS))} ___7:__ " - +  /v2d(/zi) . (84) 

Although (84) requires a prohibitive amount of computations, it is a well 

defined index for each candidate model and, at least in principle, provides 

a solution to the problem. Thus, before exploring simplifications of this 

maximum likelihood approach, we would like to continue using (84) and 

complete the discussion on the resolution selection. 

The proposed algorithm starts with a minimal model, containing only 

the terms of (74) corresponding to the low-resolution signal, and gradually 

adds on terms of the detail signal, which are indicated as significant ac- 

cording to the AIC test. The algorithm is described in more detail by the 

following steps: 

S t e p  1: 

a) Based on prior information and computational constraints select 

the depths Jmi~, Jma,, and the order q. 
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b) Initialize the model p0 using basis sequences fi'om depth Jmax only 

(low-resolution signal). 

c) Compute A I C ( # o )  

Step  2: For every depth j = J,,~ax + 1 , . . . ,  Jrn in  repeat step 3. 

S tep  3: For every basis sequence at depth j: 

a) Formulate an alternative model pi+l by adding this candidate 

sequence (and q + 1 more parameters) to model #i. 

b) Decide between the two candidate models 

Ho : ~ t r u e  - -  Iti 

H1  : ~ t r u e  = P i + I  

and accept the new basis sequence if 

A I C ( # i + I  ) < A I C ( # i ) ;  . (85) 

We should mention here that tile proposed algorithm is not exclusively tied 

to the AIC criterion used in step 3. Hypothesis testing procedures have also 

been applied to the model selection problem [42], [43] and can be used in this 

framework. Some researchers argue that hypothesis testing procedures offer 

the flexibility of a threshold selection and are more versatile [20]. Moreover, 

these approaches hold asymptotically even for non-Gaussian data. 

Hypothesis testing procedures are based on a statistic formed by the 

ratio of the residual energies under the candidate models #1 and #2, 

s[d(#l), d(#2)] - U av - (#'2) , (86)  

It can be shown that this statistic is asymptotically x2[d(#2)-  d(px)] dis- 

tributed if p2 D Pl [26, pg. 422]. Based on this observation, the statistical 

significance of (86) can be tested, using an appropriate threshold for the de- 

sired confidence level. Thus, (86) can be used in place of the AIC criterion 

in step 3 of the algorithm. 
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In both cases, the proposed algorithm exploits model selection tech- 

niques to locally select the appropriate resolution for the wavelet expansion. 

It increases the resolution until a satisfactory approximation is achieved, as 

indicated by the statistical test. In this way, the multiresolution descrip- 

tion is adapted to the local variability of the TV coefficients. Moreover, 

this algorithm provides a maximum likelihood (ML) estimate of the trans- 

mitted symbol stream, and thus simultaneously performs the equalization 

and detection task. The exhaustive search however, implied by the ML ap- 

proach of eq. (84), makes this algorithm computationaly too demanding. 

Therefore, it is of interest to examine special cases or suboptimal solutions 

which reduce the amount of computations required. 

C. S U B O P T I M A L  M E T H O D S  

As mentioned earlier, during the training period where w(n) is given, 

eq. (74) represents a linear model and the computation of the AIC for each 

candidate model only amounts to the solution of a LS problem. Thus, in 

this case the problem is drastically simplified. Therefore, for cases where 

the significant basis sequences can be determined during the training peri- 

od, the ML method is readily applicable. 

This approach may fit well in tile context of periodically varying chan- 

nels discussed earlier, but unfortunately cannot be applied to the current 

multiresolution framework. The reason is tllat the wavelet expansion of 

eq. (70) involves locally concentrated basis sequences. Thus, not all basis 

sequences can be tested using training data, since some of them contribute 

only to later parts of the data record, i.e., they are zero (or close to zero) 

throughout the training part. 

An interesting case where a linear solution is possible in this multires- 

olution framework, is when the channel can be approximated by a causal, 
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totally stable, all pole model, 

P 

y(n) - ~ a(n; k)y(n - k) + w(n) + v(n) . (87) 
k = l  

By expanding a(n; k) on a multiresolution basis using (16) and identifying 

e(n) - w ( n ) +  v(n) as an error term, we obtain a linear regression with 

i.i.d, non-Gaussian residuals, which is not limited to the training period. 

Thus, the proposed algorithm with the test of (86) call be implemented by 

solving only a linear problem for each candidate model. 

Apart from this special case, the application of the ML approach to gen- 

eral ARMA or MA channels involves a prohibitive amount of computations. 

Some computational savings can be achieved if the iterative procedure, pro- 

posed in [44] (for the TI case) is used. At each iteration of this procedure, 

w was fixed and the optimal _0~,, was computed using LS and then _0~, was 

fixed and a more accurate estimate for w was computed through the Vit- 

terbi algorithm. However, no global convergence of this algorithm call be 

guaranteed. 

Next, we would like to discuss blind solutions to the resolution selec- 

tion problem. Surprisingly enough, these methods although suboptimal, 

provide a simple and linear solution and are well matched with the blind 

estimation techniques discussed earlier. In order to grasp the main idea of 

this approach, let us concentrate on the zero lag of the signal's TV auto- 

correlation mlly(n;O) - E{ly(n)12}. Let us consider a general expansion 

as in (5) and, similarly to (73), express rally(n; O) as 

q 
2 2 2 010.) - Ib(-; k)l + (88) 

k = 0  

L q 

2 Okt~]ft,(n)ft~(n)+o., 
i t ,12=l  k = 0  

using (30) and (5). If we rearrange terms, (88)can be written more explic- 
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Figure 8" Decision-feedback equalization of a TV channel 
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itly as 

q 
2 �9 �9 

l<ll<i2<L k=O 

L q 
2 2] 12 2 (89) 

i=1 k=0  

Using instantaneous approximations for the LHS of (89) as in Section IV, 

we obtain 

Iv(n)l 2 - r n l l y ( n ;  0 1 0 # ) +  e( , l l0/~ ) (90) 

where e(nl_0,) is a zero-mean error term (under model #). Equations (89), 

(90) define a linear regression of Iv(n)[ 2 onto the basis sequences fl*~ (n)fz2 (n) 
for n = 0,. . . ,  N - 1. They form the basis for a linear blind model selection 

algorithm. Each new candidate model in Step 3 of the depth selection 

algorithm with one more basis sequence, would involve L+ 1 more regressors 

in (89). Then the X 2 test of eq. (86) can be used in this linear setup, to 

test the significance of the new model. 

The regression of (89), (90) Call be extended to more lags of the auto- 

correlation or higher moments and is well tied with the blind procedures 

of Section IV. Notice that  no estimates of the channel parameters are pro- 

vided at this step; hence, once the significant basis sequences have been 

determined, the blind methods of Section IV have to be applied. This pro- 

cedure possesses no optimality but offers a simple solution to the resolution 

selection problem. 

VI. SIMULATIONS 

In this section we present some simulation examples to illustrate the 

potential and applicability of the proposed methods ill rapidly fading envi- 

ronments. Some comparisons with more traditional adaptive methods are 

also presented and the superiority of the new approach is shown. How- 
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Figure 9" Error-probability curves 

ever, these examples do not constitute a complete simulations analysis of 

the proposed methods, and do not study the effects of different coding or 

modulation schemes on the performance of the proposed equalizers. 

In the first test case we simulated a mobile radio channel and applied the 

adaptive and blind solution, proposed in Sections III and IV, to estimate 

and equalize the TV channel. We used a two tap channel given by (2) with 

q = 1, while the TV coefficients were given by a linear combination of three 

basis sequences (L = 3 in (5)), corresponding to a direct path plus two 

reflectors 

f l ( n )  - l + j  , f 2 ( n ) - e  j ~ ' ~  , f 3 ( n )  - e j ~ n  �9 (91) 

The periods were chosen to be T2 = 120 and T3 = 200 samples. These 

numbers are not far from reality for the mobile radio channel, for a carrier 

frequency of 900 MHz, bit rate around 20 Kbit/sec, and a vehicle moving 

at 100 Km/h.  
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12 

The RLS based algorithm of Tables 1 and 2 was used. Tile data flame 

consisted of 1200 samples where the first 200 were used for training. 4- 

QAM modulation was used and AWGN was added at the output. Figures 

8a and 8b show how the SNR and ISI change with time in this periodically 

varying channel. SNR and ISI are plotted (in db) as functions of time. 

Figure 8c illustrates the performance of the proposed adaptive method. It 

shows the locations of decoding errors in the data frame. The indicator 

function (which becomes one, when an error occurs) is plotted versus time. 

In comparison, Fig. 8d shows the error pattern when the conventional 

RLS decision-feedback equalizer is used. Figure 8d clearly shows that the 

conventional approach loses track of the TV channel soon after the training 

period, and performs very poorly. Thus, this channel presents an example 

of a rapidly fading environment, where the time-variations are too fast for 
.. 

the conventional adaptive algorithms to follow. 

In order to get a more general impression of the proposed algorithm's 

performance, we have plotted the symbol error probabilities versus SNR in 

Fig 9, obtained through Monte-Carlo simulations (50 iterations per SNR 

point, 2 db increments). The solid line represents demodulation with a 

priori known channel, the dashed line represents the estimated channel case 

(using the proposed decision-feedback method), and the dashed-dotted line 
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Figure 11" True and estimated TV tap coefficients 

shows the poorly performing conventional decision-feedback method. No 

error correcting coding was used. 

The blind method of Section IV was also applied to the same chan- 

nel. The data  length was 2000 samples and the average SNR was 5 db. 

The proposed minimization procedure with linear initialization was used to 

estimate the expansion coefficients. Figure 10 shows the true expansion co- 

efficients 0kz (solid line) as well as the estimated ones, using 10 Monte-Carlo 

runs (dashed: mean, dashed-dotted: =t= standard deviation); 0kt is complex 

here, so we plot the real part (index 1-6) followed by the imaginary part 

(index 7-12). In Fig. 11 we show the true (solid line) and the reconstructed 

(dashed line) periodically varying channel coefficients. We have used (5) 

and the blind estimates of Okt to reconstruct b(n; k). We plot the real and 
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Figure 12: Received symbols: Before and after equalization 

imaginary parts of b(n; k) in separate subplots. Figure 11 shows that the 

proposed algorithm can follow the rapid variations of the channel fairly 

well. 

Finally, in Fig. 12 we plot the received symbols (before and after equal- 

ization) on a constellation graph. Figure 12a shows the unequalized symbols 

which suffer severe ISI. Figure 12b shows these symbols after equalization 

using the conventional DF approach, Fig. 12c after the proposed adaptive 

method and Fig. 12d after the novel blind method. In Figures 12b-12d the 

ISI due to previous symbols is subtracted from the current symbol, using 

the channel estimate. The figure shows that the novel methods manage to 

remove the ISI in situations where the conventional methods fail. 

In the second test case, we examined a TV-AR channel described by 
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Figure 14: True and estimated TV frequency response 

(87). The two TV coefficients are shown in Fig. 13 (solid line); the first 

coefficient remains constant throughout the data record, while the second 

exhibits a transient change at the center of the record. This corresponds 

to a transient change in the frequency response of this generally low-pass 

channel as shown in Fig. 14. The noise was additive, white, Gaussian of 

12db SNR. The resolution selection algorithm of Section V.C was applied 

using a standard wavelet basis taken from [45]. The estimated coefficients 

are shown in dashed lines while the RLS estimates are shown in dot-dashed 

lines. Notice that the transient jumps are too fast for the RLS algorithm 

to follow. 

In order to illustrate how the algorithm proceeds, we have plotted in 

Fig. 15 the X2-statistic value (+ symbol) for each iteration as well as the 
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Figure 15: X 2 test at each iteration 

corresponding threshold (dashed line). Each iteration determines the signif- 

icance of one added regressor. In this figure we visualize how the algorithm 

decided which regressors to keep. In the same figure, we also show the true 

and estimated expansion parameters corresponding to these regressors. We 

see that  most parameters are zero and are correctly identified as such by 

the algorithm. 

In the third case, we tested a TV-MA channel as in (2) of order q = 1. 

Its TV coefficients exhibit abrupt changes (solid line in Fig. 16). These 

coefficients correspond to a channel with an in band spectral null, whose 

frequency drifts at the center of the data record as shown in Fig. 17. 

The Haar wavelet basis was used in this example, which is best suited for 

describing discontinuities and jumps. 
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The regression of (89), (90) was used to blindly determine the resolution 

depth. The significant regressors (i.e., model parameters) were determined 

using the x2-test. The iterations of the algorithm are visualized in Fig. 18, 

where only three components of the detail signal are shown to be significant. 

After the significant regressors have been determined, the blind method 

of Section IV was employed to estimate the channel. The estimated TV 

coefficients are shown in Fig. 16 with dashed lines. They represent a 

piecewise constant approximation to the actual trajectory. 

VII. CONCLUSIONS 

Throughout  this chapter, basis expansion ideas are employed to identify 

TV systems and equalize rapidly fading channels. This work illustrates 

the potential of basis expansion tools for addressing challenging questions 

regarding adaptive and blind estimation of these TV channels. It also 

provides a general framework, into which multiresolution descriptions fit 

nicely, and cumulant based methods can be extended to cover the TV case. 

Several more questions regarding the performance and optimality of the 

proposed methods remain open. Also, recursive and more computational- 

ly efficient implementations need to be studied. Finally, the usefulness of 
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these procedures in other deconvolution problems, different than the com- 

munications setup, should be examined. 
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recurrent neural network, s e e  Recurrent neur- 

al networks, pipelined 
VLSI signal processing, 55-56 

Power estimation, VLSI signal processing, 59, 
61-64 

Power supply sizing, 25-27 
Precision, VLSI signal processing, 53-54 
Prediction 

adaptive filter classification and, 93 
defined, 89 

QMF banks 
L2-functions, 151-153 
orthonormal 

Hilbert space structures, 136--142 
basic decompositions, 136-137 
coarse-scale decompositions, 137-140 
openings, 140-142 

random signals, 153-158 
filtering and decimation, 153-156 
"wave-packet" tree, 156-158 

wavelet bases, 142-151 
existence and properties of limit ~), 

147-150 
Fourier transform, 148 
smoothness conditions, 149-150 

fine scale asymptotic behavior and mul- 
tiresolution analysis of L2(R), 
142-147 

openings, 150-151 
polyphase approach, 122-130 

down- and up-sampling, 123 
maximally decimated filter banks, 

124-125 
openings, 127-130 

QMF synthesis, 130-135 
lossless two-port FIR polynomial transfer 

functions, 133-135 
non-unitary, 130-131 
unitary, 131-132 

Quadrature mirror filters, s e e  QMF 

Recurrent neural networks 
adaptive filtering and 

classification, 90-93 
continuous learning process, 93-94 
cost function and, 90 
linear versus nonlinear, 90-91 
nonrecursive versus recursive, 91 
one-step prediction of speech signal, 

105-109 
pipelined adaptive predictor, 99-105 

construction, 99-101 
convergence, 104 
data fusion, 105 
features, 102-105 
multiple time series, 102 
nested nonlinearity, 104-105 
neurobiological considerations, 

101-102 
overlapping data windows, 105 
smoothed cost function, 105 
weight sharing, 104 

applications, 108-115, 110-112 
adaptive equalization of communication 

channels, 11 0-113 
coding speech at low-bit rates, 108-110 

nonlinear adaptive filters and, 95-99 
pipelined, 99-105 

algorithm for on-line training, 115-117 
construction, 99-101 
features, 102-105 

convergence, 104 
data fusion, 105 
nested nonlinearity, 104-105 
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overlapping data windows, 105 
smoothed cost function, 105 
weight sharing, 104 

multiple time series, 102 
neurobiological considerations, 101-102 

Regularity, VLSI signal processing, 54-55 

Sense amplifiers, memory system and, 23-25 
Signal processing, very large scale integrated, 

s e e  VLSI signal processing 
Smoothing, defined, 89 
Speech signal, one-step prediction of, 105-107 
SRAM, 19, 20-21 
Static memory, six-transistor, 19, 20-21 

Technology scaling 
and performance scaling of inner product 

processors, 66--67 
rules and examples, 67-72 

Time-varying systems, identification and chan- 
nel equalization, 333-395 

adaptive algorithms, 335, 344-349 
basis expansions and TV channels, 338-341 
blind channel estimation, 336-337,349-365 

linear blind methods, 363-365 
moment matching approach, 358-363 
TV channel identifiability, 354-358 
TV moments and cumulants, 350-354 

intersymbol interference, 334 
mobile radio channel, 341-344 
multiresolution descriptions, 365-378 

maximum likelihood methods, 372-375 
resolution depth, 370-371 
suboptimal methods, 375-378 

overview, 333-338 
simulations, 378-388 

Tracking, continuous learning process and, 94 
Transfer function, QMF synthesis, 133-135 
Transforms, computation of, filter-banks and, 

s e e  Filter-banks, computation of trans- 
forms 

Transport processor, discrete time, linear phase, 
255-278 

defined, 255-256 
nonrecursive, 262-270 

example, 270-277 

optimal integer valued finite impulse 
responses, 256-262 

Tricepstrum equalization algorithm, blind 
deconvolution, 295-301 

TV channel identifiability, 354-358; s e e  a l s o  

Time varying systems, identification and 
channel equalization 

Very large scale integrated signal processing, 
s e e  VLSI signal processing 

VLSI signal processing, 1-99 
architectural weapons, 53-56 

locality, 55-56 
pipelining, 53-54 
precision, 54-55 
regularity, 55 

area estimation, 56-57, 58 
arithmetic elements, 27-53 

adders, 27-33 
biased redundant binary methods, 33-38, 

39 
fast comparators, 38, 39 
multiplication, 38, 40-39 

CMOS digital circuits and, 2-27 
demultiplexer, 7, 8 
exclusive OR (XOR) gate, 7-14 

behavior specification, 7-8 
summary, 13-14, 15 
XOR-A design, 8 
XOR-B design, 8-9 
XOR-C design, 9-10 
XOR-D design, 10 
XOR-E design, 10-11 
XOR-F design, 11 
XOR-G design, 11-12 
XOR-H design, 12 
XOR-I design, 12-13 
XOR-J design, 13 

fully static logic, 2 
inverter, 4-6 

tri-state, 5-6 
latches, 14, 1 6-17 
memory, 19-25 

caches, 25 
decoders, 21-23 
DRAM, 20-21 
FLASH, 21 
pipelined, 25 
sense amplifiers, 23-25 
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multiplexer, 6-7 
power supply sizing, 25-27 
transmission gate, 3-4 

energy and capacity limits, 73 
low-complexity filter-banks and, 197-205 
low voltage digital logic, 73-74 
mapping algorithms to architectures, 50-53 
multichip modules, 72 
performance estimation, 57, 59, 60 
power estimation, 59, 61-64 
technology scaling, 64-72 

and performance scaling of inner product 
processors, 66-67 

rules and examples, 67-72 

orthonormal QMF banks, 142-151 
existence and properties of limit ~), 

147-150 
Fourier transform, 148 
smoothness conditions, 149-150 

fine scale asymptotic behavior and mul- 
tiresolution analysis of L2(R), 142-147 

openings, 150-151 
in time-varying system identification channel 

equalization, s e e  Time-varying systems, 
identification and channel equalization 

Weight sharing, pipelined recurrent neural net- 
work, 104 

Wiener filter, 90 

W 

Wavelets XOR gate, s e e  Exclusive OR (XOR) gate 
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