N

Newnes

EMBEDDED
HARDWARE

know It all

* A 360 degree view from our best-selling authors

INCLUDES

MEWMNES ONLIME

MEMBERSHIF

+ Key facts, techniques, and applications fully detailed

¢ The ultimate hard-working desk reference:
all the essential information, techniques, and tricks
of the trade in one volume

Ganssle « Noergaard + Eady « Edwards
Kalz « Gentile + Amold « Hyder + Perrin

Embedded Hardware

Newnes Know It All Series

PIC Microcontrollers: Know It All

Lucio Di Jasio, Tim Wilmshurst, Dogan Ibrahim, John Morton,
Martin Bates, Jack Smith, D.W. Smith, and Chuck Hellebuyck
ISBN: 978-0-7506-8615-0

Embedded Software: Know It All

Jean Labrosse, Jack Ganssle, Tammy Noergaard, Robert Oshana, Colin Walls, Keith Curtis,
Jason Andrews, David J. Katz, Rick Gentile, Kamal Hyder, and Bob Perrin

ISBN: 978-0-7506-8583-2

Embedded Hardware: Know It All

Jack Ganssle, Tammy Noergaard, Fred Eady, Creed Huddleston, Lewin Edwards,
David J. Katz, Rick Gentile, Ken Arnold, Kamal Hyder, and Bob Perrin

ISBN: 978-0-7506-8584-9

Wireless Networking: Know It All

Praphul Chandra, Daniel M. Dobkin, Alan Bensky, Ron Olexa,
David A. Lide, and Farid Dowla

ISBN: 978-0-7506-8582-5

RF & Wireless Technologies: Know It All

Bruce Fette, Roberto Aiello, Praphul Chandra, Daniel Dobkin,

Alan Bensky, Douglas Miron, David A. Lide, Farid Dowla, and Ron Olexa
ISBN: 978-0-7506-8581-8

For more information on these and other Newnes titles visit: www.newnespress.com

Embedded Hardware

Jack Ganssle
Tammy Noergaard
Fred Eady

Lewin Edwards
David J. Katz

Rick Gentile

Ken Arnold

Kamal Hyder

Bob Perrin

Creed Huddleston

AMSTERDAM ¢ BOSTON ¢ HEIDELBERG ¢« LONDON
NEW YORK ¢ OXFORD e PARIS ¢« SAN DIEGO
S SAN FRANCISCO e« SINGAPORE ¢ SYDNEY « TOKYO

LSEVIER Newnes is an imprint of Elsevier Newnes

Cover image by iStockphoto

Newnes is an imprint of Elsevier

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2008 by Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
E-mail: permissions @elsevier.com. You may also complete your request online via
the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact”
then “Copyright and Permission” and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written,
Elsevier prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data
Ganssle, Jack G.

Embedded hardware / Jack Ganssle ... [et al.].

p. cm.

Includes index.

ISBN 978-0-7506-8584-9 (alk. paper)

1. Embedded computer systems. 1. Title.

TK7895.E42G37 2007

004.16—dc22

2007027559

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Newnes publications
visit our Web site at www.books.elsevier.com

07 08 09 10 109 8 7 6 5 4 3 21

Typeset by Charon Tec Ltd (A Macmillan Company), Chennai, India
www.charontec.com
Printed in the United States of America

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID oo Foundation

Contents

ADOUL the AULNOTSeiiiiiiiitie ettt ettt Xiii
Chapter 1: Embedded Hardware BaSIiCScocouiiriieeiiiiiiieeiie ettt 1
1.1 Lesson One on Hardware: Reading Schematics...........coccooveriiniiiiiiiiiniiiciceeee 1

1.2 The Embedded Board and the von Neumann Modelccoociiiiiiniiiniiniineenne, 5

1.3 Powering the HardWareccoccuiiiiieiiieiiieeiie ettt s s 9
1.3.1 A Quick Comment on Analog Vs. Digital SignalS........ccccceeceeviinieniinennennen. 10

1.4 BasSiC BIECIIOMNICS ..eeuviiiuiiiiiiiiiieeeie ettt ettt st st et et e st e e e e 12
L.4.1 DC CIICUILS ettt ettt et e be b e eae e 12

1.4.2 AC CIICUILS .ttt ettt ettt sb e sb et e st e bt e bt ebeenbeenbeeeeens 21

1.4.3 ACHVE DEVICES ...eeeiniiiiiiieiite ettt et et s 28

1.5 Putting It Together: A POWET SUPPLY ..cvvveieiiiiiieiiieeiieeee e 32
1.5.1 TRE SCOPE ..ttt ettt sttt e b e e e 35

1.5.2 CONIOLS ..ttt ettt et et et st 35

1.5.3 PIODES. ...ttt et 38
EINANOTES -ttt sttt st naees 41
Chapter 2: LOZIC CIICUILS ...e.teiuieiietieitiesitesit ettt ettt sb ettt et esbe e s bt et e b e bt e nbeenbeenaeens 43
2.1 COAINE ittt ettt ettt ettt eneen 43
2,101 BOD et ettt 46

2.2 Combinatorial LOZIC. ...couiiiiiiiiiiiiieieete ettt 47
2.2.1 NOT GALE ettt ettt ettt ettt ettt ettt et e bt e teesbeebeebeeseenseenseans 47

2.2.2 AND and NAND Gates......ccceeueeruieriirniiiieeieeieeie ettt ettt sreeeeens 48

2.2.3 OR and NOR GateS....ccueerueerieiiiiiieieeieeieeie ettt ettt ettt sbeesbeenbeeeeens 49

2.2.4 X OR ettt ettt b ettt ettt e b bt beebeeteen 50

2.2.5 CHICUILS 1ttt et et ettt et et eb et e be e b ebeeneeens 50

2.2.6 TIIStALE DEVICES ...uveeutieuiieieeieeieeie ettt ettt ettt b e b et 53

2.3 Sequential LOZIC.......coiiiiiiiiiiiiereeeeet ettt 53
2.3.1 LOZIC WIAP-UD 1eiiiiiieiiieiiteeieeste ettt ettt et ettt e snteesnbeeeneeeneean 57

2.4 Putting It All Together: The Integrated CirCuitoceeveereenieneenienieneeeeieeieeiens 58

ENANOLES ..ot e e e e e ettt e e e e et ettt aeaeeraaaaaas 61

vi Contents

Chapter 3: Embedded ProCeSSOTS.oiutiiiiiieiieiie ittt st sbee e 63
3.1 INEFOAUCTION ..ottt ettt ettt et ettt aeeaeens 63
3.2 ISA Architecture MOdelS.......c.covuiiiiiiiiiiiiiiieiieiteeee ettt 65

3.2.1 OPETALIONS .euveentieniietietiete et et et et e bt et e bt e bt e bt e be e bt e bt e bt esbeenbeenbeenbeenbeeneeans 65
3.2.2 OPCTANAS ..enviiiiiiieiteie ettt ettt ettt ettt et sn e 68
TG TN 101 2T PR PRTSR 69
3.2.4 Addressing MOAES.........eoueiieeiiiiiieiieeeeee ettt ettt 71
3.2.5 Interrupts and Exception Handlingc..ccoccevieniiiiininiinniiiccccnccens 72
3.2.6 Application-Specific ISA MOdEIScceeviieiiieniieeiieete e 72
3.2.7 General-Purpose ISA MOdelSccceerieiiiniiiniiiieieeeeteee e 74
3.2.8 Instruction-Level Parallelism ISA Models........ccccoveiniiiiiiiniiiiiciieeieeen 76
3.3 Internal ProcesSor DESIZN.....ccuiiiuiiiiiieiiieeiieeieeeiee et et ve e e st e s e seeeeneeenes 78
3.3.1 Central Processing Unit (CPU)cccooiiiiiiiiiiiiiieieeieeeeeeeee e 82
3.3.2 On-Chip MEMOTYeeiiiiiiiiiiieiieiteeeeete ettt ettt saeeaee s 99
3.3.3 Processor Input/Output (I/O).......ceecvieeiiieiiieieeie ettt 113
3.3.4 ProcesSOr BUSES......uiiiuiiiiiiiiiieiieeciee ettt st 130
3.4 Processor PerfOrmManceceeeuiiiiiieiiiiiieeeiee ettt 131
3.4.1 Benchmarks.......oooieiiiiiiiiiiiiec e 133
ENANOTES ...ttt ettt ettt ettt et ettt et et ebe e 133

Chapter 4: Embedded Board Buses and I/Occcoociiiiiieiiiieieeeeceeeeeeee et 137
4.1 B0Ard T/O .ttt b et 137
4.2 Managing Data: Serial vs. Parallel I/O.......c..ccccoviiiiiniiniiiiiecceeeeee 140

4.2.1 Serial I/O Example 1: Networking and Communications: RS-232................. 144
4.2.2 Example: Motorola/Freescale MPC823 FADS Board

RS-232 System Modelc.ccooiriiiiiiiiiiiiieeecee e 146
4.2.3 Serial I/0 Example 2: Networking and Communications:

IEEE 802.11 Wireless LANoooiiiiiiiieee et 148
4.2.4 Paralle] T/O ...coooiiiiiiiiiteee e 153
4.2.5 Parallel I/0O Example 3: “Parallel” Output and Graphics I/Occcc...... 153
4.2.6 Parallel and Serial I/0O Example 4: Networking and

Communications—Ethernet...........cocoeoiiiiiiiiiiienieee e 156
4.2.7 Example 1: Motorola/Freescale MPC823 FADS Board

Ethernet System Modelcooioiiiiiiiiiiieeeeeeeeeeeeee e 158
4.2.8 Example 2: Net Silicon ARM7 (6127001) Development

Board Ethernet System Modelccooviieiiieiiieeiieeiie e 160
4.2.9 Example 3: Adastra Neptune x86 Board Ethernet System Model.................. 161

4.3 Interfacing the I/O COMPONENLSc..eeuiriieniieiiieiieieeieeit ettt 161

4.3.1 Interfacing the I/O Device with the Embedded Board.............cccoeeeveevinnnnnns 162

4.3.2 Interfacing an I/O Controller and the Master CPUccoccceviiiiininnennennn. 164

Contents vii

4.4 T/O and Performancecooeeieeriieniieiieeee ettt ettt 165
4.5 B0ard BUSES......eoiiiiiiiieiieiieteete ettt 166
4.6 Bus Arbitration and TImiNg..........cceeeeuieerieenieenieereeeeieeeieeeiee e eiee e e seeeereeeneeas 168
4.6.1 Nonexpandable Bus: I?C Bus EXamplec..coccoeveeeveereereceeeeeeeeesereneenaes 174
4.6.2 PCI (Peripheral Component Interconnect)
Bus Example: Expandablecccoooiieiiieiiieiiieceeee e 175
4.7 Integrating the Bus with Other Board COmponentscoceceverereenieneneeeenennns 179
4.8 BUS PerfOrmanCecocuueiiiiiiiieiiieeiee ettt et ettt et e e 180
Chapter 5: MEeMOTY SYSTEIMIS.eeuteiieieeteeteettete et et et et ebe et e bt ebeesteebeebeebeenbeeeeenseenne 183
5.1 INEEOAUCHION ..ottt et ettt e st e e st esbeesbeeens 183
5.2 MEMOTY SPACES ...eeevieeuiieetieeiieeite ettt estteeeteesbteeteeentteesaesasseessseessseesnseesseesseesnseeans 183
5.2.1 L1 INStruction MEMOTYcc.cerueeiiiriiirniieiieiteieete ettt 186
5.2.2 Using L1 Instruction Memory for Data Placement............cccceceeveneneenicnenne. 186
5.2.3 L1 Datad MEMOTYcecuvieeiieeiiieeiieeiteesiteeeiteesiteeeeteeeteesebeesnteesnbeesseesneeenneeennns 187
5.3 CACE OVETVIEW ..c.uiiiuiiiiiiiiieiieee ettt ettt et et ettt st st 187
5.3.1 What IS Cache?cooiiiiiiiieee et 188
5.3.2 Direct-Mapped CaChecccueiiiiiieiiiieiiieie ettt 190
5.3.3 Fully Associative CaChe........ccceeviieiiiriiiiiiiiiiieeieec e 190
5.3.4 N-Way Set-Associative CaChecc.cocueeiiriiiiiiiiiiiiiiiieieeeeeeee e 191
5.3.5 More Cache Details.......ccceevuiiiiiiiiiiiiiiiieeceecc e 191
5.3.6 Write-Through and Write-Back Data Cache.........cc.cccoceeviiniiniinienienieneene. 193
5.4 EXernal MEMOTYcocutiiiiiiiiiiiieii ettt ettt s st e 195
5.4.1 Synchronous MEMOTYcceeeiuiieriieeiiieniieerie et e eieesreeeieeeieeeaeeesneeesaee e 195
5.4.2 ASynchronous MEMOTYcocueerieeiiirniieniieiieie ettt e 203
5.4.3 Nonvolatile MEMOTIESccoviiiiiiiiieiiiieiie ettt et 206
5.5 DITECt MEMOTY ACCESS ..eeeuvireiiieirieniieesieeeieeetteeieeetteenseeesseeessseessseesnseesseesseesnseeens 214
5.5.1 DMA Controller OVEIVIEWccceeruiriiieniieiiiieeieeie ettt s 215
5.5.2 More on the DMA CONtrollerc.cooiiiiniiiiniiiniienieenieeeiee et 216
5.5.3 Programming the DMA COntroller...........ccceovuieiiieeiieniieeiieeiie e 218
5.5.4 DMA ClaSSTICALIONSeeuvieuiieiieiieieeieeieee ettt 228
5.5.5 Register-Based DIMAccciiiiiiiiiiiiieeee e 228
5.5.6 Descriptor-Based DIMAoooiiiiiiieiiiee ettt 231
5.5.7 Advanced DMA Features.........cceoeerieriiieniieniiiiieieeieeie et 234
ENANOLES ..ottt sttt ettt et sateas 236
Chapter 6: Timing Analysis in Embedded SyStems...........coceevieniiniineinennieieceeeeeene 239
6.1 INETOAUCTION ...ttt et ettt ettt et ettt et eabeeabeeaneenees 239
6.2 Timing Diagram Notation CONVENTIONSceecvierruieerirreriieerieenieeseeeseeessreesveeenseeens 239

6.2.1 Rise and Fall TIMES......ccooviiiiiiiiiiiiiiii e 241

viii Contents
6.2.2 Propagation DEIayscccceiieiiiiiiiieieieeteeee e 241
6.2.3 Setup and HOId Time.........coouieiiiiiiiiieiiieie et 241
6.2.4 Tri-State Bus INterfacing.........ccccveeeiieeiiieiiieiie ettt 243
6.2.5 Pulse Width and Clock Frequencycccoceeieiiiiiiiiinieeccee e 244
6.3 Fan-Out and Loading Analysis: DC and AC..........cccoooiiiiiniiiniieiceeeeeeeeeen 244
6.3.1 Calculating Wiring CapacCitanCe..........ccceerueeerreerrrerireenieeeieesieesseesseeesseeenens 247
6.3.2 Fan-Out When CMOS Drives LSTTLccccoiiiiiiiiiiiee e, 249
6.3.3 Transmission-Line Effectsccccooiriiiiiiiiniiieee, 251
6.3.4 Ground BOUNCEccooieiiiiniiiieicicceneeee e s 253
6.4 Logic Family IC Characteristics and Interfacingcccecceeveeveenienieneeneeneeenn 255
6.4.1 Interfacing TTL Compatible Signals to 5 VCMOScceriiriiniiniinnnen. 258
6.5 Design Example: Noise Margin Analysis Spreadsheet..........cccccoevvveervveenciieeiieennnenns 261
6.6 Worst-Case Timing Analysis Example..........cccooieiieiiiiiiiiiiiieeeeeeee 270
ENANOTES ..ottt et e 272
Chapter 7: Choosing a Microcontroller and Other Design Decisionscceceeveeveeenieenenne 273
7.1 INErOAUCTION ..ottt e ettt et 273
7.2 Choosing the Right COTecccueiiiiiiiieeiie ettt 276
7.3 Building Custom Peripherals with FPGAS........cccooiiiiiiiiiiiieeeeee 281
7.4 Whose Development Hardware to Use—Chicken or Egg?.......ccccoceviiiiinninncnnncnnn. 282
7.5 Recommended Laboratory EQUIPMENt...........ccccvieriiiriieniieeiie e 285
7.6 Development TOOIChAINSc.coiiiiiiiiiiiiiiiiee e 286
7.7 Free Embedded Operating SYSEIMScc.eecvirierriiriiieiieiieieetcete et 289
7.8 GNU and You: How Using “Free” Software Affects Your Product......................... 295
Chapter 8: The Essence of Microcontroller Networking: RS-232.........ccccocevviiiiinininiincnne. 301
8.1 INIrOAUCTION ...ttt e s 301
8.2 SOME HISOTY ..c.etiiieiiiieiieeite ettt sttt sbee b e b e nbee s 303
8.3 RS-232 Standard Operating Procedurec.cccooeeriiriiniinienicnienienieeeeneneeneens 305
8.4 RS-232 Voltage Conversion Considerationscceeeveeerveeriieeenieeneeesieeesveesneens 308
8.5 Implementing RS-232 with a Microcontrollercocooveiiiiienienienienienieneenens 310
8.5.1 Basic RS-232 HardwWarecoceeiiiiiiiiiniieiieeiee ettt 310
8.5.2 Building a Simple Microcontroller RS-232 TranSceivercc.ccceeeeeeruvennee. 313
8.6 Writing RS-232 Microcontroller Routines in BASICcocoiiiiiiniiniiniicnen, 333
8.7 Building Some RS-232 Communications Hardware..........c..ccocccoveniiniinenicncnnen, 339
8.7.1 A Few More BASIC RS-232 INStructions.........cocccevereerieneeneeneenienreneennes 339
8.8 I2C: The Other Serial PrOtOCOLcvurveveieriieeiesiieeieeiesiesee s 342
8.8.1 WhY USE I2C 2. 343
8.8.2 The T2C BUSvuiuieieiiieeieieiie ettt 344

8.8.3 T2C ACKS ANA NAKS ...t e e 347

Contents x

8.8.4 More on Arbitration and Clock Synchronization............ccccceeeeiieriinnenncnne 347

8.8.5 T2C AdAIESSINGveveoveveeeeeeeeeeeee e esenesenes 351

8.8.6 SOME I2C FiIWAIE........c..oecevereveeceesceeieeeeieeseesesae e sesaeaas 352

8.8.7 The AVR Master I2C COde..........ooovuerreereeeeieeeeeeeeeeeeeeeeee oo 352

8.8.8 The AVR I’C Master-Receiver Mode COde..............coovvrvermerererereeeereesiennnnns 358

8.8.9 The PIC I’C Slave-Transmitter Mode COdecceveveruerreereeererriereneennns 359
8.8.10 The AVR-to-PIC I?°C Communications Ballccccoceeeveruererruerereerernnnns 365

8.9 CommuNICAtiON OPLIONS.eerutiiriieeiieeiie ettt eeteesiteesteesteeebeeebeeeieeesbeeessaeesabeesbeenns 378
8.9.1 The Serial Peripheral Interface Port...........cccvvvviieviiiiiiieeieeieeeeeee s 378

8.9.2 The Controller Area NEtWOTKccccceeiiieiiiiiiiiiiieeieee e 380

8.9.3 Acceptance FIlterS.......ccouiiiiiiiiiiiiie ettt 386
EINANOTE. ...ttt ettt et ettt 387
Chapter 9: Interfacing to Sensors and ACTUALOLSc.cocuerviiriiriiriierienie et 389
9.1 TNEFOAUCTION ..ottt sttt et e 389
9.2 Digital INterfacingoooueiiiiiiiiiiiee e 389
9.2.1 Mixing 3.3 and 5 V DEVICEScooeiriiriiriiiieiieniecrieeseeneeeeteeee e 389

9.2.2 Protecting Digital INPULSccveeiiiiiiiiiiie et 392
9.2.3 Expanding Digital INPULScovuiiiiiiiiiiiieiieieeeeseeeee e 398
9.2.4 Expanding Digital OUtPULS.........coceeriiriiriiniiieniceeeeneceeeieeeee e 402

9.3 High-Current OULPULS......cccueteiieeiiienieeeteeeteeeieeeieeeiteeseteeebeesbeesnbeesnbeesseeesnseenseens 404
9.3.1 BJT-Based DITVETScooouiriiiiiiiiiieiiestesteeeeteie ettt 405
9.3.2 MOSFETS .ttt ettt et sbe e bt e b e b e saeens 409

9.3.3 Electromechanical Relays..........ccceeviiiiiiiiiiiiiieieeeiee et 411
9.3.4 Solid-State ReIaYScccueeviiieiiieiiieeiee et ettt ettt eeae e e s 417

9.4 CPLDS aNd FPGAS......coiiiiiieie ettt ettt ettt et ettt et e 418
9.5 Analog Interfacing: AN OVEIVIEWcccueeeiieriiieeriieeiieeeieeeieeeieeseeesaeesieeeseeesneees 420
0.5.1 ADCS ittt ettt 420

9.5.2 Project 1: Characterizing an Analog Channel............c.cccoceniiniininiinnnnns 421

9.0 CONCIUSION ..ttt ettt ettt ettt et ettt 434
EINANOTE. ...ttt ettt ettt ettt et 435
Chapter 10: Other Useful Hardware Design Tips and Techniques..........c.ccceevvvevcieecieennnenne. 437
1O T INEOAUCTION ...ttt ettt ettt ettt et 437
10.2 DIAZNOSTICS ..ttt ettt ettt ettt et et e e ate et et e et esteeateeaseeabeemseenseenteenseenseenne 437
10.3 CoNNECHNG TOOLS .. .ieetireiieeiiierie ettt ettt ettt et e st esnbeesbeeebeeeaeeenaneas 438
10.4 Other TROUZNLS....cc.viiiiie ettt et e e e ssreessseeesseeensaeesseensseas 439
10.5 Construction Methodsccoueiiiiiiiiiiiiiiieteee ettt 440
10.5.1 Power and Ground Planes...........ccccceviriiiiiiniiinniinieeiceiceeeeeee e 441

10.5.2 Ground ProbIEMScoooviiiiieieeeeeeeeeee ettt ee e e e e eeeeeeeeeeeeeeeeeeeas 441

X Contents
10.6 Electromagnetic COmpPatiDilityccceeoeeiiieriiiiiiiiiiie e 442
10.7 Electrostatic Discharge Effectscoccoviiiiiiiiiiiiiiieeeceeeee et 442
10.7.1 Fault TOIEIANCEcceeviiieiieiieiiiieictertestteee et 443
10.8 Hardware Development TOOLS.........cocuiiiiiiiiiiiieeieee et 444
10.8.1 InStrumentation ISSUESc.cevuerviiriiieiieriiiiiieie e 445
10.9 Software Development TOOISceeecuiiiiiieiiiie e 445
10.10 Other Specialized Design Considerationsc.ceecueeieeiieeienienieeie e 446
10.10.1 Thermal Analysis and Designcccccoceeviirniiiiiiiniiiiiieecceceeene 446
10.10.2 Battery-Powered System Design Considerations............ccceeeveeevveenneenne 447
10.11 Processor Performance MEtriCS........cceeuieiiriiriiiieiieeie e 448
TOTTLT TIPS ettt sttt st 448
TOTL.2 OPS. et s 448
10.11.3 Benchmarksc...covueiiiiiiiiiiiiieieeteeeee e 449
Appendix A: Schematic SYMDOISc..coiiiiiiiiiiieeie e e 451
Appendix B: Acronyms and AbDIreviationsccceecveeviirieeiirniieieeieeieeieeeere e 459
Appendix C: PC Board Design ISSUESccceeeeieriinirieiiniinieieicneeiceeie et 469
C.1 INErOAUCTION. ...ttt sttt nae e 469
C.2 Resistance 0f CONAUCTIOLScc.eecveriiriieieiiniieieieniint et 470
C.3 Voltage Drop in Signal Leads—“Kelvin” Feedbackcccoceriiniiniininninnens 471
C.4 Signal Return CUITENLSeeevuiiiiiiiiiiieeieeette ettt ettt ettt e st e st eebeeeaee e 472
C.5 Grounding in Mixed Analog/Digital SYyStemsccceerieeriieniiieniiieeiee e 474
C.6 Ground and POwer Planes...........ccooueiiiiiiiiiniiiie ettt 475
C.7 Double-Sided versus Multilayer Printed Circuit Boardsccocevienienicncnnns 477
C.8 Multicard Mixed-Signal SYStEMSccccveeeiieriieeiieeie ettt et eeiee e 478
C.9 Separating Analog and Digital Grounds.........c..coceveeceereninieniinienceeeneneneeeeneenne 479
C.10 Grounding and Decoupling Mixed-Signal ICs with Low Digital Currents............ 480
C.11 Treat the ADC Digital Outputs With Carecccceeveveerciieriieiiieeie e 481
C.12 Sampling Clock COnSIAErationsceoueerueerieerueesieeieeie e eie et eee e 483
C.13 The Origins of the Confusion About Mixed-Signal Grounding: Applying
Single-Card Grounding Concepts to Multicard Systems...........cceeeveeecrieerereennneenne. 485
C.14 Summary: Grounding Mixed-Signal Devices with Low Digital Currents in a
MUIHCAT SYSEEIM ..ttt ettt e 486
C.15 Summary: Grounding Mixed-Signal Devices with High Digital
Currents in @ Multicard SYSTEIMcocueeiuiiiierieiieniesiesieee e 487
C.16 Grounding DSPs with Internal Phase-Locked Loops........cccccoceeviriieiiincincnnncnn. 487
C.17 Grounding SUMMATYc.ccccveeriuieriiieeetieeireereeeseeeseeesseeeseesseeeseesssseesssesssseessses 488
C.18 Some General PC Board Layout Guidelines for Mixed-Signal Systems 489

Contents xi

C.19 SKIN EfFECT ..ottt s 491
C.20 TransSmiSSion LINEScc.cocuiriiiiiiiiiiiiiiiiicetcetce e 493
C.21 Be Careful with Ground Plane Breaks...........ccccceceriiriiiniieniiniiiiciiceieeceeeeee 494
C.22 Ground Isolation TEChNIQUESc..coeeiiriiririeiiineetcese e 495
C.23 Static PCB EffECTS ...eooiiiiiiiiiieeeceeeeee e 497
C.24 Sample MINIDIP and SOIC Op Amp PCB Guard Layouts.........c.cccccveeeverrrrennnnn. 500
C.25 Dynamic PCB EffeCtS......cooiiiiiiiiiiiie et 502
C.26 Stray CapaCItaANCecccueeeiruiiriiriieiiete ettt ettt ettt ettt sttt 503
C.27 Capacitive Noise and Faraday Shields...........ccceeviieriiiiiiiniieiiieciecee e 504
C.28 The Floating Shield Problemccoccooiiiiiiiiiiiieieete e 506
C.29 Buffering ADCs Against Logic NOIS€........ccceevuirviiriiiiiiiiiieiiiiecceieeeeeeeeeeeene 506
ENANOLES <.ttt 509
ACKNOWIBAZIMEILSeeutiiiriieiiiintieiteteste ettt ettt ettt sttt sae b eanenbe 509

This page intentionally left blank

About the Authors

Ken Arnold (Chapters 6 and 10) is the author of Embedded Controller Hardware Design.
He is the Embedded Computer Engineering Program Coordinator and an instructor at UCSD
Extension, as well as founding director of the On-Line University of California, where he
manages, develops and teaches courses in engineering and embedded systems design. Ken
has been developing commercial embedded systems and teaching others how for more than
two decades. As the champion of the embedded program at UCSD, he lead the inception and
growth of the program as well as introducing the world’s first on-line embedded course well
over a decade ago. Ken was also the founder and CEO of HiTech Equipment Corp., CTO of
Wireless Innovation, and engineering chief at General Dynamics.

Fred Eady (Chapter 8) is the author of Networking and Internetworking with
Microcontrollers. As an engineering consultant, he has implemented communications
networks for the space program and designed hardware and firmware for the medical, retail
and public utility industries. He currently writes a monthly embedded design column for a
popular electronics enthusiast magazine. Fred also composes monthly articles for a popular
robotics magazine. Fred has been dabbling in electronics for over 30 years. His embedded
design expertise spans the spectrum and includes Intel’s 8748 and 8051 microcontrollers,
the entire Microchip PIC microcontroller family and the Atmel AVR microcontrollers. Fred
recently retired from his consulting work and is focused on writing magazine columns and
embedded design books.

Lewin Edwards (Chapter 7) is the author of Embedded System Design on a Shoestring. He hails
from Adelaide, Australia. His career began with five years of security and encryption software at
PC-Plus Systems. The next five years were spent developing networkable multimedia appliances
at Digi-Frame in Port Chester, N'Y. Since 2004 he has been developing security and fire safety
devices at a Fortune 100 company in New York. He has written numerous technical articles and
three embedded systems books, with a fourth due in early 2008.

Jack Ganssle (Chapters 1, 2, and 10) is the author of The Firmware Handbook. He has written
over 500 articles and six books about embedded systems, as well as a book about his sailing
fiascos. He started developing embedded systems in the early 70s using the 8008. He’s started
and sold three electronics companies, including one of the bigger embedded tool businesses.
He’s developed or managed over 100 embedded products, from deep-sea navigation gear to

Xiv About the Authors

the White House security system... and one instrument that analyzed cow poop! He’s currently
a member of NASA’s Super Problem Resolution Team, a group of outside experts formed to
advise NASA in the wake of Columbia’s demise, and serves on the boards of several high-tech
companies. Jack now gives seminars to companies world-wide about better ways to develop
embedded systems.

Rick Gentile (Chapter 5) is the author of Embedded Media Processing. Rick joined ADI

in 2000 as a Senior DSP Applications Engineer, and he currently leads the Processor
Applications Group, which is responsible for Blackfin, SHARC and TigerSHARC processors.
Prior to joining ADI, Rick was a Member of the Technical Staff at MIT Lincoln Laboratory,
where he designed several signal processors used in a wide range of radar sensors. He has
authored dozens of articles and presented at multiple technical conferences. He received a
B.S. in 1987 from the University of Massachusetts at Amherst and an M.S. in 1994 from
Northeastern University, both in Electrical and Computer Engineering.

Creed Huddleston (Chapter 8) is the author of Intelligent Sensor Design Using the Microchip
dsPIC. With over twenty years of experience designing real-time embedded systems, he is
President and founder of Real-Time by Design, LLC, a certified Microchip Design Partner
based in Raleigh, NC that specializes in the creation of hard real-time intelligent sensing
systems. In addition to his duties with Real-Time by Design, Creed also serves on the
Advisory Board of Quickfilter Technologies Inc., a Texas-based company producing mixed-
signal integrated circuits that provide high-speed analog signal conditioning and digital signal
processing in a single package. A graduate of Rice University in Houston, TX with a BSEE
degree, Creed performed extensive graduate work in digital signal processing at the University
of Texas at Arlington before heading east to start Omnisys. To her great credit and his great
fortune, Creed and his wife Lisa have been married for 23 years and have three wonderful
children: Kate, Beth, and Dan.

Kamal Hyder (Chapter 9) is the author of Embedded Systems Design Using the Rabbit 3000
Microprocessor. He started his career with an embedded microcontroller manufacturer. He
then wrote CPU microcode for Tandem Computers for a number of years, and was a Product
Manager at Cisco Systems, working on next-generation switching platforms. He is currently
with Brocade Communications as Senior Group Product Manager. Kamal’s BS is in EE/CS
from the University of Massachusetts, Amherst, and he has an MBA in finance/marketing
from Santa Clara University.

David Katz (Chapter 5) is the author of Embedded Media Processing. He has over 15 years
of experience in circuit and system design. Currently, he is the Blackfin Applications Manager
at Analog Devices, Inc., where he focuses on specifying new convergent processors. He has
published over 100 embedded processing articles domestically and internationally, and he has
presented several conference papers in the field. Previously, he worked at Motorola, Inc., as a

About the Authors Xxv

senior design engineer in cable modem and automation groups. David holds both a B.S. and
M. Eng. in Electrical Engineering from Cornell University.

Walt Kester (Appendix C) is the editor of Data Conversion Handbook. He is a corporate
staff applications engineer at Analog Devices. For more than 35 years at Analog Devices,

he has designed, developed, and given applications support for high-speed ADCs, DACs,
SHAS, op amps, and analog multiplexers. Besides writing many papers and articles, he
prepared and edited eleven major applications books which form the basis for the Analog
Devices world-wide technical seminar series including the topics of op amps, data conversion,
power management, sensor signal conditioning, mixed-signal, and practical analog design
techniques. Walt has a BSEE from NC State University and MSEE from Duke University.

Tammy Noergaard (Chapters 1, 2, 3, 4, Appendices B and C) is the author of Embedded
Systems Architecture. Since beginning her embedded systems career in 1995, she has had
wide experience in product development, system design and integration, operations, sales,
marketing, and training. Noergaard worked for Sony as a lead software engineer developing
and testing embedded software for analog TVs. At Wind River she was the liaison engineer
between developmental engineers and customers to provide design expertise, systems
configuration, systems integration, and training for Wind River embedded software (OS,
Java, device drivers, etc.) and all associated hardware for a variety of embedded systems in
the Consumer Electronic market. Most recently she was a Field Engineering Specialist and
Consultant with Esmertec North America, providing project management, system design,
system integration, system configuration, support and expertise for various embedded Java
systems using Jbed in everything from control systems to medical devices to digital TVs.
Noergaard has lectured to engineering classes at the University of California at Berkeley and
Stanford, the Embedded Internet Conference, and the Java User’s Group in San Jose, among
others.

Bob Perrin (Chapter 9) is the author of Embedded Systems Design Using the Rabbit 3000
Microprocessor. He got his start in electronics at the age of nine when his mother gave him
a “150-in-one Projects” kit from Radio Shack for Christmas. He grew up programming a
Commodore PET. In 1990, Bob graduated with a BSEE from Washington State University.
Since then Bob has been working as an engineer designing digital and analog electronics.
He has published about twenty technical articles, most with Circuit Cellar.

This page intentionally left blank

Embedded Hardware Basics

Jack Ganssle
Tammy Noergaard

1.1 Lesson One on Hardware: Reading Schematics

This section is equally important for embedded hardware and software engineers. Before
diving into the details, note that it is important for all embedded designers to be able to under-
stand the diagrams and symbols that hardware engineers create and use to describe their hard-
ware designs to the outside world. These diagrams and symbols are the keys to quickly and
efficiently understanding even the most complex hardware design, regardless of how much or
little practical experience one has in designing hardware. They also contain the information an
embedded programmer needs to design any software that requires compatibility with the hard-
ware, and they provide insight to a programmer as to how to successfully communicate the
hardware requirements of the software to a hardware engineer.

There are several different types of engineering hardware drawings, including:

e Block diagrams, which typically depict the major components of a board (processors,
buses, I/0, memory) or a single component (a processor, for example) at a systems
architecture or higher level. In short, a block diagram is a basic overview of the hard-
ware, with implementation details abstracted out. While a block diagram can reflect
the actual physical layout of a board containing these major components, it mainly
depicts how different components or units within a component function together at a
systems architecture level. Block diagrams are used extensively throughout this book
(in fact, Figures 1.5a—e later in this chapter are examples of block diagrams) because
they are the simplest method by which to depict and describe the components within a
system. The symbols used within a block diagram are simple, such as squares or rec-
tangles for chips and straight lines for buses. Block diagrams are typically not detailed
enough for a software designer to be able to write all the low-level software accurately
enough to control the hardware (without a lot of headaches, trial and error, and even
some burned-out hardware!). However, they are very useful in communicating a basic
overview of the hardware, as well as providing a basis for creating more detailed
hardware diagrams.

e Schematics. Schematics are electronic circuit diagrams that provide a more detailed
view of all the devices within a circuit or within a single component—everything from

2 Chapter 1

processors down to resistors. A schematic diagram is not meant to depict the physical
layout of the board or component, but provides information on the flow of data in the
system, defining what signals are assigned where—which signals travel on the various
lines of a bus, appear on the pins of a processor, and so on. In schematic diagrams,
schematic symbols are used to depict all the components within the system. They
typically do not look anything like the physical components they represent but are a
type of “shorthand” representation based on some type of schematic symbol standard.
A schematic diagram is the most useful diagram to both hardware and software
designers trying to determine how a system actually operates, to debug hardware, or
to write and debug the software managing the hardware. See Appendix A for a list of
commonly used schematic symbols.

e Wiring diagrams. These diagrams represent the bus connections between the major
and minor components on a board or within a chip. In wiring diagrams, vertical and
horizontal lines are used to represent the lines of a bus, and either schematic symbols
or more simplified symbols (that physically resemble the other components on the
board or elements within a component) are used. These diagrams may represent an
approximate depiction of the physical layout of a component or board.

e Logic diagrams/prints. Logic diagrams/prints are used to show a wide variety of circuit
information using logical symbols (AND, OR, NOT, XOR, and so on) and logical inputs
and outputs (the 1’s and 0’s). These diagrams do not replace schematics, but they can be
useful in simplifying certain types of circuits in order to understand how they function.

e Timing diagrams. Timing diagrams display timing graphs of various input and output
signals of a circuit, as well as the relationships between the various signals. They are
the most common diagrams (after block diagrams) in hardware user manuals and data
sheets.

Regardless of the type, to understand how to read and interpret these diagrams, it is important
to first learn the standard symbols, conventions, and rules used. Examples of the symbols used
in timing diagrams are shown in Table 1.1, along with the conventions for input/output signals
associated with each of the symbols.

An example of a timing diagram is shown in Figure 1.1. In this figure, each row represents a
different signal. In the case of the signal rising and falling symbols within the diagram, the
rise time or fall time is indicated by the time it takes for the signal to move from LOW to
HIGH or vice versa (the entire length of the diagonal line of the symbol). In comparing two
signals, a delay is measured at the center of the rising or falling symbols of each signal being
compared. In Figure 1.1, there is a fall time delay between signals B and C and signals A and
C in the first falling symbol. In comparing the first falling symbol of signals A and B in the
figure, no delay is indicated by the timing diagram.

Embedded Hardware Basics 3

Table 1.1: Timing diagrams symbol table.[""]

Symbol

Input Signals

Output Signals

Input signal must be valid

Output signal will be valid

> >

Input signal doesn’t affect
system, will work regardless

Indeterminate output signal

Garbage signal (nonsense)

Output signal not driven
(floating), tristate, HiZ, high
impedance

/S

If the input signal rises:

Output signal will rise

I

If the input signal falls:

Output signal will fall

Signal A

Rise Time Fall Time

- el

Figure 1.1: Timing diagram example.

Schematic diagrams are much more complex than their timing diagram counterparts. As intro-
duced earlier this chapter, schematics provide a more detailed view of all the devices within a
circuit or within a single component. Figure 1.2 shows an example of a schematic diagram.

In the case of schematic diagrams, some of the conventions and rules include:

e A title section is located at the bottom of each schematic page, listing information
that includes, but is not limited to, the name of the circuit, the name of the hardware
engineer responsible for the design, the date, and a list of revisions made to the design

since its conception.

e The use of schematic symbols indicating the various components of a circuit (see

Appendix A).

4

Chapter 1

(5) MICTOR EMILA TOR HEADERS-38 PIN

(4)SOT23-6, (8)1206, (1)MINIDI
GND & POWER POINTS.

P8,

' § T.LEDS CPULED:
POWER IN—5 V@1.5 A P1DB9-M P2 DB9-M cus S CRULEDS REC‘J RS Lk
sy [rs2se | |mszs [msass | a3V i T s
| 4 & A JACK
5] P12 60 PINS S;&g‘;%‘ﬁs PORT A RIA® swz, 0P, 02| &| 8| 8| & SER. EE
L33V D150 ™ pai1.. PORT B 64 K, 81928
1] PORT C 4 |
_| 25V GPIO(A4) 33V
P10 50 PINS GPIO RESET PHY (B4) T
MIC PORT: OR
5V 33V SV 33V e oy s s 8y QHYINT.(CO LXTO71 PHY
IEEE1284 10/100 BTX
[PorT A][PorT B][PORT C]|
SW3, SW4, SW5, SW6 RST- BGA
v “MIC PORT
@D
ADDR, LINE BOOTSTRAP SURST TERAM GFOD> & .
DIP SWITCHES 7 GATES GPIOF> i1 0>100) Ml 25 MHz
w
40 GPIG % MAC
SW4-6
GPIHy W
on 2 WE-C8- 21 CASI-CSI- RST-]
*MIC = Multi Interface Controller RESET P.B.
DSI0) R
A27:0 RESET A
CONTL LINES
32DATALINES o 31 ADDR/CONTL
P10(MIC)
3.3V BUF BGA/PQFP 5 JTAG R160
BCLK DEBUG P11(EXP)
CSO FLASH MEMORY, X 16(1-8 MB) or x32(2-16 MB)
XTAL2 P314 PIN
STANDARD = x16(1 MB) or X32(2 MB) 1 48432 MHz
€SI SDRAM MEMORY, x16(8 MB) or x32(16 MB) BUFFERS SIGNALS =
«— XTALY OSCILLATOR
STANDARD = SAME 14,2365 M
» r4
CS3 PARALLEL EE, x8(2-32 KB) 25V [-{CORE, PLL 10 [Hsav
SD CLK
STANDARD = 8 K x8
PROTOTYPING AREA— (2)SIOC16, TS

Size | Document

Datel September 09, 2002 Sheet 1 of 1

Figure 1.2: Schematic diagram example.['-?]

Along with the assigned symbol comes a label that details information about the
component (i.e., size, type, power ratings, etc.). Labels for components of a symbol,
such as the pin numbers of an IC, signal names associated with wires, and so forth are
usually located outside of the schematic symbol.

Abbreviations and prefixes are used for common units of measurement (i.e., k for kilo
or 103, M for mega or 106) and these prefixes replace writing out the units and larger

numbers.

Functional groups and subgroups of components are typically separated onto different

pages.

I/0 and voltage source/ground terminals. In general, positive voltage supply terminals
are located at the top of the page, and negative supply/ground at the bottom. Input
components are usually on the left, and output components are on the right.

At the very least, the block and schematic diagrams should contain nothing unfamiliar to any-
one working on the embedded project, whether they are coding software or prototyping the

Embedded Hardware Basics 5

hardware. This means becoming familiar with everything from where the name of the diagram
is located to how the states of the components shown within the diagrams are represented.

One of the most efficient ways of learning how to learn to read and/or create a hardware dia-
gram is via the Traister and Lisk method!'], which involves:

Step 1. Learning the basic symbols that can make up the type of diagram, such as timing or
schematic symbols. To aid in the learning of these symbols, rotate between this step and
steps 2 and/or 3.

Step 2. Reading as many diagrams as possible until reading them becomes boring (in that
case, rotate between this step and steps 1 and/or 3) or comfortable (so there is no longer
the need to look up every other symbol while reading).

Step 3. Writing a diagram to practice simulating what has been read, again until it becomes
either boring (which means rotating back through steps 1 and/or 2) or comfortable.

1.2 The Embedded Board and the von Neumann Model

In embedded devices, all the electronics hardware resides on a board, also referred to as a
printed wiring board (PW) or printed circuit board (PCB). PCBs are often made of thin sheets
of fiberglass. The electrical path of the circuit is printed in copper, which carries the electri-
cal signals between the various components connected on the board. All electronic compo-
nents that make up the circuit are connected to this board, either by soldering, plugging into

a socket, or some other connection mechanism. All the hardware on an embedded board is
located in the hardware layer of the Embedded Systems Model (see Figure 1.3).

Application Software Layer
System Software Layer

Hardware
Layer

Embedded Board

Figure 1.3: Embedded board and the Embedded Systems Model.
At the highest level, the major hardware components of most boards can be classified into five
major categories:
e Central processing unit (CPU). The master processor.
e Memory. Where the system’s software is stored.

e Input device(s). Input slave processors and relative electrical components.

www.newnespress.com

6 Chapter 1

e Qutput device(s). Output slave processors and relative electrical components.

e Data pathway(s)/bus(es). Interconnects the other components, providing a “highway”
for data to travel on from one component to another, including any wires, bus bridges,
and/or bus controllers.

These five categories are based on the major elements defined by the von Neumann model
(see Figure 1.4), a tool that can be used to understand any electronic device’s hardware archi-
tecture. The von Neumann model is a result of the published work of John von Neumann

in 1945, which defined the requirements of a general-purpose electronic computer. Because
embedded systems are a type of computer system, this model can be applied as a means of
understanding embedded systems hardware.

EMBEDDED SYSTEM BOARD

CONTROLS USAGE AND MANIPULATION
OF DATA Master Processor

| t

5 SYSTEM COMPONENTS COMMONLY CONNECTED VIA BUSES

DATA FROM CPU OR INPUT DEVICES l l
STORED IN MEMORY UNTIL A CPU OR
OUTPUT DEVICE REQUEST Memory
1 A
1
1
1 y
BRINGS DATA INTO ITHE EMBEDDED SYSTEM | |5yt Output | TAKES DATA OUT OF THE EMBEDDED SYSTEM
1

Figure 1.4: Embedded system board organization.!"-4]

Based on the von Neumann architecture model (also referred to as the Princeton architecture).

While board designs can vary widely, as demonstrated in the examples of Figures 1.5a—d, all
the major elements on these embedded boards—and on just about any embedded board—can
be classified as either the master CPU(s), memory, input/output, or bus components.

To understand how the major components on an embedded board function, it is useful to first
understand what these components consist of and why. All the components on an embedded
board, including the major components introduced in the von Neumann model, are made up of
one or some combination of interconnected basic electronic devices, such as wires, resistors,

Embedded Hardware Basics 7

¢ Master Processor: Geode

» GX533@1.1w (x86)
Data Digital RGB .
DDR [« Address/Cont > > TFT * Memory: ROM (BIOS is
BN [edressicontrol | Amp Geode™ located in), SDRAM
or SDCLKs GX 533@1.1W Analog RGB I Devi .
128Mx16)[™ Processor > CRT * Input/Output Devices:
PCI 3.3V 085535, Audio Codec...
> = « Buses: LPC,PCI
A A
\d
L1 Clock
14 MHz = System FS2 JTAG 33 MHz Eth t
T_|Generator Control Header < > Conterg}ﬁ)r
A
\i \d
USB Ports
< >1 AMD Geode™
(@x2) css535 | IDE/Flash Port | |pE Header
Line Out Companion "|(44-pin, 2 mm)
Audio Device
Headphone Out Codec | > LPC
Microphone In <e—— 1 [BIOS
LPCBus §
GPIOs Serial Data " | LPC Header
Power Button >
Figure 1.5a: AMD/National Semiconductor x86 reference board.l"-5]
© 2004 Advanced Micro Devices, Inc. Reprinted with permission.
IEEE 1284,
Shared RAM,
Register-
10Base-T Thinnet 10/100Base-T Serial Mode
* Master Processor: Net+ARM ARM7
10Base-T | Thinnet 100Base-T RS232 16646 * Memory: Flash, RAM
Xevr Xevr Xevr Xevr Xevr * Input/Output Devices: 10Base-T trans-

ceiver, Thinnet transceiver, 100Base-T
transceiver, RS-232 transceiver, 16646
Ethernet Mil transceiver, ...

* Buses: System Bus, MII, ...

NET+ARM Chip

System Bus 8/16/32
RAM Memory Application
Flash Memory 256KX32 Specific
Hardware

Figure 1.5b: Net Silicon ARM7 reference board.["-¢]

8 Chapter 1

— .
Au 1500 PCl Interface| * Master Processor: Encore M3
CPU (Au-1500-based) processor

core * Memory: Flash, SODIMM

¢ Input/Output Devices: Super I/O,...
e Buses: PCI, ...

A

SOD IMM
IDE Interface
Flash Memory N Floppy/
Memory Interface Parallel Port
; Keyboard &
SouthBridge
Ethernet Mouse Ports
<« p
Ports (2) (Super 1/0)

Peripheral IrDA
Serial Port (1) |[«—» Interface Port
Serial Ports (2)
USB Ports (2) |[«—

EJTAG Port (1)

PC1 Host
Controller

| S —

Figure 1.5c: Ampro MIPS reference board.['”]

Motorola MPC8245 VIAVT82C686B
CPU Master Processor: MPC8245
PowerPC™ IDE Interface .
* Memory: Flash, SODIMM
603e core PCI

¢ Input/Output Devices: Super I/O,

Bus Floppy/
< » Superl/O Parallel Port 82559 Transceiver, ...
SODIMM [¢—»| & Controller * Buses: PCI, ...
(Southbridge) Keyboard &

Mouse Ports

Flash Memory PCI
Memory Controller | Bridge I'DA
Port

Serial Ports (2)

Serial <+—»| USB Ports (4)
Debug Port [+
Miscellaneous
JTAG N Ethernet Port
Intel 82559ER

Power Clock
Supply 33 MHz PCl Interface

Figure 1.5d: Ampro PowerPC reference board.["-8]

!

Copyright Freescale Semiconductor, Inc., 2004. Used by permission.

capacitors, inductors, and diodes. These devices also can act to connect the major components
of a board together. At the highest level, these devices are typically classified as either passive
or active components. In short, passive components include devices such as wires, resistors,

capacitors and inductors that can only receive or store power. Active components, on the other
hand, include devices such as transistors, diodes, and integrated circuits (ICs) that are capable

Embedded Hardware Basics 9

Video Processor |«

* Master Processor: M37273 (8-bit)
12C Bus TV Microcontroller

¢ Memory: NVM

A

Audio Processor

M37273 .)
¢ Input/Output Devices: Video processor,
NVM e Audio Processor, Tuner, ...
* Buses: I2C, ...
Tuner |«

Figure 1.5e: Mitsubishi analog TV reference board.

of delivering as well as receiving and storing power. In some cases, active components them-
selves can be made up of passive components. Within the passive and active families of
components, these circuit devices essentially differ according to how they respond to

voltage and current.

1.3 Powering the Hardware

Power is the rate that energy is expended or work is performed. This means that in alternating
current (AC) and direct current (DC) circuits, the power associated with each element on the
board equals the current through the element multiplied by the voltage across the element

(P = VI). Accurate power and energy calculations must be done for all elements on an embed-
ded board to determine the power consumption requirements of that particular board. This is
because each element can only handle a certain type of power, so AC-DC converters, DC-AC
converters, direct AC-AC converters, and so on may be required. Also, each element has a
limited amount of power that it requires to function, that it can handle, or that it dissipates.
These calculations determine the type of voltage source that can be used on a board and how
powerful the voltage source needs to be.

In embedded systems, both AC and DC voltage sources are used because each current genera-
tion technique has its pros and cons. AC is easier to generate in large amounts using genera-
tors driven by turbines turned by everything from wind to water. Producing large amounts of
DC from electrochemical cells (batteries) is not as practical. Also, because transmitting cur-
rent over long transmission lines results in a significant loss of energy due to the resistance of
the wire, most modern electric company facilities transmit electricity to outlets in AC current,
since AC can be transformed to lower or higher voltages much more easily than DC. With AC,
a device called a transformer, located at the service provider, is used to efficiently transmit

10 Chapter 1

current over long distances with lower losses. The transformer is a device that transfers electri-
cal energy from one circuit to another and can make changes to the current and voltage dur-
ing the transfer. The service provider transmits lower levels of current at a higher voltage rate
from the power plant, and then a transformer at the customer site decreases the voltage to the
value required. On the flip side, at very high voltages, wires offer less resistance to DC than
AC, thus making DC more efficient to transmit than AC over very long distances.

Some embedded boards integrate or plug into power supplies. Power supplies can be either
AC or DC. To use an AC power supply to supply power to components using only DC, an
AC-to-DC converter can be used to convert AC to the lower DC voltages required by the
various components on an embedded board, which typically require 3.3, 5, or 12 volts.

Note: Other types of converters, such as DC-to-DC, DC-to-AC, or direct AC-to-AC
can be used to handle the required power conversions for devices that have other
requirements.

Other embedded boards or components on a board (such as nonvolatile memory, discussed in
more detail in Chapter 5) rely on batteries as voltage sources, which can be more practical for
providing power because of their size. Battery-powered boards don’t rely on a power plant for
energy, and they allow portability of embedded devices that don’t need to be plugged into an
outlet. Also, because batteries supply DC current, no mechanism is needed to convert AC to
DC for components that require DC, as is needed with boards that rely on a power supply and
outlet supplying AC. Batteries, however, have a limited life and must be either recharged or
replaced.

1.3.1 A Quick Comment on Analog vs. Digital Signals

A digital system processes only digital data, which is data represented by only 0’s and 1°s.

On most boards, two voltages represent “0” and “1,” since all data is represented as some
combination of 1’s and 0’s. No voltage (0 volts) is referred to as ground, VSS, or low, and
3,5, or 12 volts are commonly referred to as VCC, VDD, or high. All signals within the sys-
tem are one of the two voltages or are transitioning to one of the two voltages. Systems can
define “0” as low and “1” as high, or some range of 0—1 volts as LOW and 4-5 volts as HIGH,
for instance. Other signals can base the definition of a “1” or “0” on edges (low to high) or
(high to low).

Because most major components on an embedded board, such as processors, inherently proc-
ess the 1’s and O’s of digital signals, a lot of embedded hardware is digital by nature. However,
an embedded system can still process analog signals, which are continuous—that is, not only

Embedded Hardware Basics 11

1I’s and 0’s but values in between as well. Obviously, a mechanism is needed on the board to
convert analog signals to digital signals. An analog signal is digitized by a sampling process,
and the resulting digital data can be translated back into a voltage “wave” that mirrors the
original analog waveform.

Real-World Advice

Inaccurate Signals: Problems with Noise in Analog and Digital Signals

One of the most serious problems in both the analog and digital signal realm involves
noise distorting incoming signals, thus corrupting and affecting the accuracy of data.
Noise is generally any unwanted signal alteration from an input source, any part of the
input signal generated from something other than a sensor, or even noise generated from
the sensor itself. Noise is a common problem with analog signals. Digital signals, on the
other hand, are at greater risk if the signals are not generated locally to the embedded
processor, so any digital signals coming across a longer transmission medium are the
most susceptible to noise problems.

Analog noise can come from a wide variety of sources—radio signals, lightning, power
lines, the microprocessor, or the analog sensing electronics themselves. The same is true
for digital noise, which can come from mechanical contacts used as computer inputs,
dirty slip rings that transmit power/data, limits in accuracy/dependability of input
source, and so forth.

The key to reducing either analog or digital noise is: (1) to follow basic design guide-
lines to avoid problems with noise. In the case of analog noise, this includes not mixing
analog and digital grounds, keeping sensitive electronic elements on the board a suf-
ficient distance from elements switching current, limiting length of wires with low signal
levels/high impedance, etc. With digital signals, this means routing signal wires away
from noise-inducing high current cables, shielding wires, transmitting signals using cor-
rect techniques, etc. (2) to clearly identify the root cause of the problem, which means
exactly what is causing the noise. With point (2), once the root cause of the noise has
been identified, a hardware or software fix can be implemented. Techniques for reducing
analog noise include filtering out frequencies not needed and averaging the signal inputs,
whereas digital noise is commonly addressed via transmitting correction codes/par-

ity bits and/or adding additional hardware to the board to correct any problems with
received data.

—Based on the articles “Minimizing Analog Noise” (May 1997),“Taming Analog Noise”
(November 1992), and “Smoothing Digital Inputs” (October 1992), by Jack Ganssle, in
Embedded Systems Programming Magazine.

12 Chapter 1

1.4 Basic Electronics

In this section, we will review some electronics fundamentals.

1.4.1 DC Circuits

DC means direct current, a fancy term for signals that don’t change. They’re flatlined, like a
corpse’s EEG or the output from a battery (Figure 1.6). Your PC’s power supply makes DC
out of the building’s AC (alternating current) mains. All digital circuits require DC power
supplies.

0.00s 10.0¥ Auto A2 RUN

NN A1 1.00V/

o |'I<4-|

e

B Y EE T PR T TS R PYTY PR PR PR NI SRR

[EEE IR

R TN TR T R A TS By PY PR PR ARSI PRI IR

£

RS

AR

Figure 1.6: A DC signal has a constant, unvarying amplitude.

1.4.1.1 Voltage and Current

We measure the quantity of electricity using voltage and amperage, but both arise from
more fundamental physics. Atoms that have a shortage or surplus of electrons are called
ions. An ion has a positive or negative charge. Two ions of opposite polarity (one plus,
meaning it’s missing electrons, and the other negative, with one or more extra electrons)
attract each other. This attractive force is called the electromotive force, commonly known
as EMF.

Charge is measured in coulombs, where one coulomb is 6.25 X 10'® electrons (for negative
charges) or protons for positive ones.

An ampere is one coulomb flowing past a point for one second. Voltage is the force between
two points for which one ampere of current will do one joule of work, a joule per second
being one watt.

Embedded Hardware Basics 13
Figure 1.7: A VOM, even an old-fashioned analog model like this $10 Radio
Shack model, measures DC voltage as well or better than a scope.
But few electrical engineers remember these definitions, and none actually use them.
An old but still apt analogy uses water flow through a pipe: Current would be the amount of
water flowing through a pipe per unit of time, whereas voltage is the pressure of the water.
The unit of current is the ampere (amp), though in computers an amp is an awful lot of cur-
rent. Most digital and analog circuits require much less. Table 1.2 shows the most common
nomenclatures.
Table 1.2: Common nomenclatures.
Name Abbreviation Number of Amps Where Likely Found
amp A 1 Power supplies; very high-performance
processors may draw many tens of amps
milliamp mA .001 amp Logic circuits, processors (tens or hundreds of
mA), generic analog circuits
microamp pA 107 amp Low-power logic, low-power analog, battery-
backed RAM
picoamp pA 1072 amp Very sensitive analog inputs
femtoamp fA 107" amp The cutting edge of low-power analog

measurements

14 Chapter 1

Most embedded systems have a far less extreme range of voltages. Typical logic and micro-
processor power supplies range from a volt or 2-5 volts. Analog power supplies rarely exceed
plus and minus 15 volts. Some analog signals from sensors might go down to the millivolt
(.001 volt) range. Radio receivers can detect microvolt-level signals, but they do this using
quite sophisticated noise-rejection techniques.

1.4.1.2 Resistors

As electrons travel through wires, components, or accidentally through a poor soul’s body,
they encounter resistance, which is the tendency of the conductor to limit electron flow.

A vacuum is a perfect resistor: no current flows through it. Air’s pretty close, but since water
is a decent conductor, humidity does allow some electricity to flow in air.

Superconductors are the only materials with zero resistance, a feat achieved through the magic
of quantum mechanics at extremely low temperatures, on the order of that of liquid nitrogen
and colder. Everything else exhibits some resistance, even the very best wires. Feel the power
cord of your 1500 watt ceramic heater—it’s warm, indicating some power is lost in the cord
due to the wire’s resistance.

We measure resistance in ohms; the more ohms, the poorer the conductor. The Greek capital
omega (£2) is the symbol denoting ohms.

Resistance, voltage, and amperage are all related by the most important of all formulas in elec-
trical engineering. Ohm’s Law states:

E=IXR

where E is voltage in volts, / is current in amps, and R is resistance in ohms. (EEs like to use £
for volts because it indicates electromotive force.)

What does this mean in practice? Feed one amp of current through a one-ohm load and there
will be one volt developed across the load. Double the voltage and, if resistance stays the
same, the current doubles.

Though all electronic components have resistance, a resistor is a device specifically made to
reduce conductivity (Figure 1.8 and Table 1.3). We use them everywhere. The volume control
on a stereo (at least, the nondigital ones) is a resistor whose value changes as you rotate the
knob; more resistance reduces the signal and hence the speaker output.

What happens when you connect resistors together? For resistors in series, the total effective
resistance is the sum of the values:

Reﬂ'z R] + Rz

Embedded Hardware Basics 15

Figure 1.8: The squiggly thing on the left is the standard symbol used by engineers to denote

a resistor on their schematics. On the right is the symbol used by engineers in the United

Kingdom. As Churchill said, we are two peoples divided by a common language.

Table 1.3: Range of values for real-world resistors.

Name Abbreviation Ohms Where Likely Found

milliohm m Q) .001T ohm Resistance of wires and other good conductors

ohm Q 1ohm Power supplies may have big dropping resistors in
the few to tens of ohms range

hundreds of ohms In embedded systems, it’s common to find resis-
tors in the few hundred ohm range used to termi-
nate high-speed signals

kiloohm k €2 or just k 1000 ohms Resistors from a half-k to a hundred or more k
are found all over every sort of electronic device;
“pullups” are typically a few k to tens of k

megaohm MQ 10%0hms Low signal-level analog circuits

hundreds of M 108++ ohms Geiger counters and other extremely sensitive

apps; rarely seen since resistors of this size are
close to the resistance of air

For two resistors in parallel, the effective resistance is:

_RIXRZ
R =% TR
1 2

(Thus, two identical resistors in parallel are effectively half the resistance of either of them:
two 1ks is 500 ohms. Now add a third: that’s essentially a 500-ohm resistor in parallel with a
1k, for an effective total of 333 ohms.)

16 Chapter 1

The general formula for more than two resistors in parallel (Figure 1.9) is:

R, R, R, R,
1k
Tk 1k 1k 1k
1k

Figure 1.9: The three series resistors on the left are equivalent to a single 3000-ohm part.

The three paralleled on the right work out to one 333-ohm device.

Manufacturers use color codes to denote the value of a particular resistor. Although at first this
may seem unnecessarily arcane, in practice it makes quite a bit of sense. Regardless of orien-
tation, no matter how it is installed on a circuit board, the part’s color bands are always visible
(Figure 1.10 and Table 1.4).

1st Color Multiplier
Band _\ / Color Band

.

2nd Color Tolerance
Band Color Band

Figure 1.10: This black-and-white photo masks the resistor’s color bands. However, we read them
from left to right, the first two designating the integer part of the value, the third band giving the
multiplier. A fourth gold (5%) or silver (10%) band indicates the part’s tolerance.

Embedded Hardware Basics 17

Table 1.4: The resistor color code. Various mnemonic devices
designed to help one remember these are no longer politically correct;
one acceptable but less memorable alternative is Big Brown Rabbits
Often Yield Great Big Vocal Groans When Gingerly Slapped.

Color band Value Multiplier
Black 0 1
Brown 1 10

Red 2 100
Orange 3 1000
Yellow 4 10,000
Green 5 100,000

Blue 6 1,000,000
Violet 7 Not used

Gray 8 Not used

White 9 Not used
Gold (third band) +10
Silver (third band) +100

The first two bands, reading from the left, give the integer part of the resistor’s value. The
third is the multiplier. Read the first two bands’ numerical values and multiply by the scale
designated by the third band. For instance: brown black red = 1 (brown) 0 (black) times 100
(red), or 1000 ohms, more commonly referred to as 1k. Table 1.5 has more examples.

Table 1.5: Examples showing how to read color bands and compute resistance.

First Band | Second Band Third Band Calculation Value (Ohms) | Commonly Called

Brown Red Orange 12 X 1000 12,000 12k

Red Red Red 22 X 100 2,200 2.2k
Orange Orange Yellow 33 X 10,000 330,000 330k
Green Blue Red 56 X 100 5,600 5.6k
Green Blue Green 56 X 100,000 5,600,000 5.6M

Red Red Black 22 X1 22 22
Brown Black Gold 10 =10 1 1

Blue Gray Red 68 X 100 6,800 6.8k

Resistors come in standard values. Novice designers specify parts that do not exist; the expe-
rienced engineer knows that, for instance, there’s no such thing as a 1.9k resistor. Engineering

is a very practical art; one important trait of the good designer is using standard and easily
available parts.

18 Chapter 1

1.4.1.3 Circuits

Electricity always flows in a loop. A battery left disconnected discharges only very slowly
because there’s no loop, no connection of any sort (other than the nonzero resistance of humid
air) between the two terminals. To make a lamp light, connect one lead to each battery termi-
nal; electrons can now run in a loop from the battery’s negative terminal, through the lamp,
and back into the battery.

There are only two types of circuits: series and parallel. All real designs use combinations of
these. A series circuit connects loads in a circular string; current flows around through each
load in sequence (Figure 1.11). In a series circuit, the current is the same in every load.

12 volts ——

10k

Figure 1.11: In a series circuit, the electrons flow through one load and then
into another. The current in each resistor is the same; the voltage

dropped across each depends on the resistor’s value.

It’s easy to calculate any parameter of a series circuit. In Figure 1.11, a 12-volt battery powers
two series resistors. Ohm’s Law tells us that the current flowing through the circuit is the volt-
age (12 in this case) divided by the resistance (the sum of the two resistors, or 12k).

Total current is thus:
1=V -+ R=(12volts) + (2000 + 10,000 ohms) = 12 =+ 12000 = 0.001 amp = 1 mA

(Remember that mA is the abbreviation for milliamps.)

So what’s the voltage across either of the resistors? In a series circuit, the current is identical
in all loads, but the voltage developed across each load is a function of the load’s resistance
and the current. Again, Ohm’s Law holds the secret. The voltage across R is the current in
the resistor times its resistance, or:

Vg, = Iz, = 0.001 amps X 2000 ohms = 2 volts

Embedded Hardware Basics 19

Since the battery places 12 volts across the entire resistor string, the voltage dropped on R,
must be 12 — 2, or 10 volts. Don’t believe that? Use Mr. Ohm’s wonderful equation on R, to
find:

Vg, = Iz, = 0.001 amps X 10,000 ohms = 10 volts

It’s easy to extend this to any number of parts wired in series.

Parallel circuits have components wired so both pins connect (Figure 1.12). Current flows
through both parts, though the amount of current depends on the resistance of each leg of the
circuit. The voltage on each component, though, is identical.

1 A A
12 volts ——— 1 2
-1 2k 10k

Figure 1.12: Ry and R; are in parallel, both driven by the 12-volt battery.

We can compute the current in each leg much as we did for the series circuit. In the preceding
case, the battery applies 12 volts to both resistors. The current through R is:

IR1 = 12 volts + 2,000 ohms = 12 + 2000 = 0.006 amps = 6 mA
Through R5:
IR2 = 12 volts + 10,000 ohms = 0.0012 amps = 1.2 mA

Real circuits are usually a combination of series and parallel elements (Figure 1.13). Even in
these more complex, more realistic cases, it’s still very simple to compute anything one wants
to know.

Ry

1k
~— 10 volts As e
- 5.6 k 2k

Figure 1.13: A series/parallel circuit.

20 Chapter 1

Let’s analyze the circuit shown in Figure 1.13. There’s only one trick: cleverly combine com-
plicated elements into simpler ones. Let’s start by figuring the current flowing out of the bat-

tery. It’s much too hard to do this calculation until we remember that two resistors in parallel

look like a single resistor with a lower value.

Start by figuring the current flowing out of the battery and through R;. We can turn this into a
series circuit (in which the current flowing is the same through all the components) by replac-
ing R; and R, with a single resistor with the same effective value as these two paralleled com-
ponents. That’s:

R R X Ry 5600 %2000
FFEOR AR, 5600+ 2000

= 1474 ohms

So the circuit is identical to one with two series resistors: R, still 1k, and Rggr at 1474 ohms.
Ohm’s Law gives the current flowing out of the battery and through these two resistors:

Vv 10

R + Ry 1000+ 1474

i = = 0.004 amps = 4 mA

Ohm’s Law remains the font of all wisdom in basic circuit analysis and readily tells us the
voltage dropped across R;:

V =iR, = 0.004 amps X 1000 ohms = 4 volts

Clearly, since the battery provides 10 volts, the voltage across the paralleled pair R, and R; is
6 volts.

1.4.1.4 Power

Power is the product of voltage and current and is expressed in watts. One watt is one volt
times one amp. A milliwatt is a thousandth of a watt; a microwatt is a millionth.

You can think of power as the total amount of electricity present. A thousand volts sounds
like a lot of electricity, but if there’s only a microamp available, that’s a paltry milliwatt—not
much power at all.

Power is also current? times resistance:
P=I>XR

Electronic components like resistors and ICs consume a certain amount of volts and amps.
An IC doesn’t move, make noise, or otherwise release energy (other than exerting a minimal
amount of energy in sending signals to other connected devices), so almost all the energy
consumed gets converted to heat. All components have maximum power dissipation ratings;
exceed these at your peril.

Embedded Hardware Basics 21

If a part feels warm it’s dissipating a reasonable fraction of a watt. If it’s hot but you can keep
your finger on it, then it’s probably operating within specs, though many analog components
want to run cooler. If you pull back, not burned, but the heat is too much for your finger, then
in most cases (be wary of the wimp factor; some people are more heat sensitive than others)
the device is too hot and either needs external cooling (heat sink, fan, etc.), has failed, or your
circuit exceeds heat parameters. A burn or near burn or discoloration of the device means
there’s trouble brewing in all but exceptional conditions (e.g., high-energy parts like power
resistors).

A PC’s processor has so many transistors, each losing a bit of heat, that the entire part might
consume and eliminate 100+ watts. That’s far more than the power required to destroy the
chip. Designers expend a huge effort in building heat sinks and fans to transfer the energy in
the part to the air.

Figure 1.14: This 10-ohm resistor, with 12 volts applied, draws 833 mA. P = PR,
so it’s sucking about 7 watts. Unfortunately, this particular part is rated for /, watt max,
so it is on fire. Few recent college grads have a visceral feel for current, power, and

heat, so this demo makes their eyes go like saucers.

The role of heat sinks and fans is to remove the heat from the circuits and dump it into the
air before the devices burn up. The fact that a part dissipates a lot of energy and wants to run
hot is not bad as long as proper thermal design removes the energy from the device before it
exceeds its max temp rating (Figure 1.14).

1.4.2 AC Circuits

AC is short for alternating current, which is any signal that’s not DC. AC signals vary with
time. The mains in your house supply AC electricity in the shape of a sine wave: the voltage

www.newnespress.com

22 Chapter 1

varies from a large negative to a large positive voltage 60 times per second (in the United
States and Japan) or 50 times per second (in most of the rest of the world).

AC signals can be either periodic, which means they endlessly and boringly repeat forever, or
aperiodic, the opposite. Static from your FM radio is largely aperiodic since it’s quite random.
The bit stream on any address or data line from a micro is mostly aperiodic, at least over short
times, as it’s a complex changing pattern driven by the software.

The rate at which a periodic AC signal varies is called its frequency, which is measured in
hertz (Hz for short). One Hz means the waveform repeats once per second. A thousand Hz is
a kHz (kilohertz), a million Hz is the famous MHz by which so many microprocessor clock
rates are defined, and a billion Hz is a GHz.

The reciprocal of Hz is period. That is, where the frequency in hertz defines the signal’s rep-
etition rate, the period is the time it takes for the signal to go through a cycle.

Mathematically:

Period in seconds = 1 + frequency in Hz

Thus, a processor running at 1 GHz has a clock period of 1 nanosecond—one billionth of a
second. No kidding. In that brief flash of time, even light goes but a bare foot. Though your
1.8 GHz PC may seem slow loading Word, it’s cranking instructions at a mind-boggling rate.

Wavelength relates a signal’s period—and thus its frequency—to a physical “size.” It’s the dis-

tance between repeating elements and is given by:

c _ 300,000,000 meters/second
frequency frequency in Hz

Wavelength in meters =

where c is the speed of light.

An FM radio station at about 100 MHz has a wavelength of 3 meters. AM signals, on the other
hand, are around 1 MHz, so each sine wave is 300 meters long. A 2.4-GHz cordless phone
runs at a wavelength a bit over 10cm.

As the frequency of an AC signal increases, things get weird. The basic ideas of DC circuits
still hold but need to be extended considerably. Just as relativity builds on Newtonian mechan-
ics to describe fast-moving systems, electronics needs new concepts to properly describe fast
AC circuits.

Resistance, in particular, is really a subset of the real nature of electronic circuits. It turns out
that there are three basic kinds of resistive components; each behaves somewhat differently.
We’ve already looked at resistors; the other two components are capacitors and inductors.

Embedded Hardware Basics 23

Both of these parts exhibit a kind of resistance that varies depending on the frequency of the
applied signal; the amount of this “AC resistance” is called reactance.

1.4.2.1 Capacitors

A capacitor, colloquially called the “cap,” is essentially two metal plates separated from each
other by a thin insulating material. This insulation, of course, means that a DC signal cannot
flow through the cap. It’s like an open circuit.

But in the AC world, strange things happen. It turns out that AC signals can make it across
the gap between the two plates; as the frequency increases, the effective resistance of this gap
decreases. This resistive effect is called reactance; for a capacitor it’s termed capacitive reac-
tance (Figure 1.15). There’s a formula for everything in electronics; for capacitive reactance
it’s:

1
¢ 2mfc
where:
X, = capacitive reactance
f = frequency in Hz
¢ = capacitance in farads
160
140 \\
120 - \
100 -
80
60
40
20
gL
7 7. 7, 7 2 < Y)
2 (-} & < 2 3 & 7
2 2 2 2 2} 0 2 2
® v Y v v D B D

Frequency (Hz)
Figure 1.15: Capacitive reactance of a 0.1 uF cap (top) and a 0.5 uF cap (bottom curve).

The vertical axis is reactance in ohms. See how larger caps have lower reactances, and as the
frequency increases reactance decreases. In other words, a bigger cap passes AC better than a
smaller one, and at higher frequencies all caps pass more AC current. Not shown: at 0 Hz (DC),

reactance of all caps is essentially infinite.

24 Chapter 1

Capacitors thus pass only changing signals (Table 1.6). The current flowing through a cap is:

(If your calculus is rusty or nonexistent, this simply means that the current flow is proportional
to the change in voltage over time.)

In other words, the faster the signal changes, the more current flows.

Table 1.6: Range of values for real-world capacitors.

Name Abbreviation Farads Where Likely Found

picofarad pF 10~ farad Padding caps on microprocessor crystals,
oscillators, analog feedback loops.

microfarad uF 107 farad Decoupling caps on chips are about .01 to
.1 pF; low-freq decoupling runs about 10 pF,
big power supply caps might be 1000 jiF.

farad F 1 farad One farad is a huge capacitor and generally
does not exist. A few vendors sell “supercaps”
that have values up to a few farads, but these
are unusual. Sometimes used to supply backup
power to RAM when the system is turned off.

In real life there’s no such thing as a perfect capacitor. All leak a certain amount of DC and
exhibit other more complex behavior. For that reason, there’s quite a range of different types
of parts.

In most embedded systems you’ll see one of two types of capacitors (Figure 1.16). The first
are the polarized ones, devices which have a plus and a minus terminal. Connect one back-
ward and the part will likely explode!

Polarized devices have large capacitance values: tens to thousands of microfarads. They’re
most often used in power supplies to remove the AC component from filtered signals.
Consider the equation of capacitive reactance: large cap values pass lower-frequency signals
efficiently. Typical construction today is from a material called tantalum; seasoned EEs often
call these devices tantalums. You’ll see tantalum caps on PC boards to provide a bit of bulk
storage of the power supply.

Smaller caps are made from a variety of materials. These have values from a few picofarads to
a fraction of a microfarad. They’re often used to “decouple” the power supply on a PCB (i.e.,
to short high-frequency switching from power to ground, so the logic signals don’t get coupled
into the power supply). Most PCBs have dozens or hundreds of these parts scattered around.

Embedded Hardware Basics 25

L
T

Figure 1.16: Schematic symbols for capacitors. The one on the left is a generic,

generally low-valued (under 1 pF) part. On the right the plus sign shows that
the cap is polarized. Installed backward, it’s likely to explode.

We can wire capacitors in series and in parallel; compute the total effective capacitance using
the rules opposite those for resistors. So, for two caps in parallel, sum their values to get the
effective capacitance. In a series configuration the total effective capacitance is:

1

L U

C, C, G

Note that this rule is for figuring the total capacitance of the circuit, not for computing the
total reactance. More on that shortly.

One useful characteristic of a capacitor is that it can store a charge. Connect one to a battery
or power supply and it will store that voltage. Remove the battery and (for a perfect, lossless
part) the capacitor will still hold that voltage. Real parts leak a bit; ones rated at under 1 pF or
so discharge rapidly. Larger parts store the charge longer.

Interesting things happen when you wire a cap and a resistor in series. The resistor limits cur-
rent to the capacitor, causing it to charge slowly. Suppose the circuit shown in Figure 1.17 is
dead, no voltage at all applied. Now turn on the switch. Though we’ve applied a DC signal,
the sudden transition from O to 5 volts is AC.

dv
Current flows due to the I = I rule; dV is the sudden edge from flipping the switch.
But the input goes from an AC-edge to steady-state DC, so current stops flowing pretty
quickly. How fast? That’s defined by the circuit’s time constant.

A resistor and capacitor in series is colloquially called an RC circuit. The graph shows how
the voltage across the capacitor increases over time. The time constant of any circuit is pretty
well approximated by:

t=RC

for R in ohms, C in farads, and ¢ in seconds.

26 Chapter 1

o o— AN

;:/

Figure 1.17: Close the switch and the voltage applied to the RC circuit looks like

the top curve. The lower graph shows how the capacitor’s voltage builds
slowly with time, headed asymptotically toward the upper curve.

This formula tells us that after RC seconds the capacitor will be charged to 63.2% of the bat-
tery’s voltage. After another RC seconds, another 63.2%, for a total of 86.5%.

Analog circuits use a lot of RC circuits; in a microprocessor it’s still common to see them con-
trolling the CPU’s reset input. Apply power to the system and all the logic comes up, but the
RC’s time constant keeps reset asserted low for a while, giving the processor time to initialize
itself.

The most common use of capacitors in the digital portion of an embedded system is to decou-
ple the logic chips’ power pins. A medium value part (0.01 to 0.1 pF) is tied between power
and ground very close to the power leads on nearly every digital chip. The goal is to keep
power supplied to the chips as clean as possible—close to a perfect DC signal.

Why would this be an issue? After all, the system’s power supply provides a nearly perfect DC
level. It turns out that as a fast logic chip switches between zero and one it can draw immense
amounts of power for a short, subnanosecond, time. The power supply cannot respond quickly
enough to regulate that, and since there’s some resistance and reactance between the supply
and the chip’s pins, what the supply provides and what the chip sees are somewhat different.
The decoupling capacitor shorts this very high-frequency (i.e., short transient) signal on Vcc
to ground. It also provides a tiny bit of localized power storage that helps overcome the instan-
taneous voltage drop between the power supply and the chip.

Most designs also include a few tantalum bulk storage devices scattered around the PC board,
also connected between Vcc and ground. Typically these are 10 to 50pF each. They are even
more effective bulk storage parts to help minimize the voltage drop chips would otherwise see.

You’ll often see very small caps (on the order of 20 pF) connected to microprocessor drive
crystals. These help the device oscillate reliably.

Embedded Hardware Basics 27

Analog circuits make many wonderful and complex uses of caps. It’s easy to build integrators
and differentiators from these parts, as well as analog hold circuits that memorize a signal for
a short period of time. Common values in these sorts of applications range from 100 pF to
fractions of a microfarad.

1.4.2.2 Inductors

An inductor is, in a sense, the opposite of a capacitor. Caps block DC but offer diminishing
resistance (really, reactance) to AC signals as the frequency increases. An inductor, on the
other hand, passes DC with zero resistance (for an idealized part), but the resistance (reac-
tance) increases proportionately to the frequency.

Physically an inductor is a coil of wire and is often referred to as a coil. A simple straight wire
exhibits essentially no inductance. Wrap a wire in a loop and it’s less friendly to AC signals.
Add more loops, or make them smaller, or put a bit of ferrous metal in the loop, and induct-
ance increases. Electromagnets are inductors, as is the field winding in an alternator or motor.

An iron core inductor is wound around a slug of metal, which increases the device’s induct-
ance substantially (Figure 1.18).

Figure 1.18: Schematic symbols of two inductors. The one on the
left is an “air core”; the one on the right is an “iron core.”

Inductance is measured in henries (H). Inductive reactance is the tendency of an inductor to
block AC and is given by:

XL = 27TLf

where:
X; = Inductive reactance
f = frequency in Hz
L = inductance in henries

Clearly, as the frequency goes to zero (DC), reactance does as well.

Inductors follow the resistor rules for parallel and series combinations: add the value (in hen-
ries) when in series, and use the division rule when in parallel.

28 Chapter 1

Inductors are much less common in embedded systems than are capacitors, yet they are occa-
sionally important. The most common use is in switching power supplies. Many datacomm
circuits use small inductors (generally millihenries) to match the network being driven.

Power supplies usually have a transformer which reduces the AC mains (from the wall) to a
lower voltage more appropriate for embedded systems (Figure 1.19).

Figure 1.19: The schematic symbol for a transformer.

Transformers are two inductors wrapped around each other, with an iron core. The input AC
generates a changing magnetic field, which induces a voltage in the output (“secondary”)
inductor.

If both inductors have the same number of wire loops, the output voltage is the same as the
input. If the secondary has fewer loops, the voltage is less.

Sometimes signals, especially those flowing off a PC board, will have a ferrite bead wrapped
around the wire. These beads are small cylinders (a few mm long) made of a ferromagnetic
material. Like all inductors, they help block AC so are used to minimize noise of signal wires.

1.4.3 Active Devices

Resistors, capacitors and inductors are the basic passive components, passive meaning
“dumb.” The parts can’t amplify or dramatically change applied signals. By contrast, active
parts can clip, amplify, distort, and otherwise change an applied signal. The earliest active
parts were vacuum tubes, called “valves” in the UK.

Consider the schematic in Figure 1.20, which is a single tube that contains two identical active
elements, each called a triode, as each has three terminals. Tubes are easy to understand; let’s
see how one works.

A filament heats the cathode, which emits a stream of electrons. They flow through the grid,

a wire mesh, and are attracted to the plate. Electrons are negatively charged, so applying a
very small amount of positive voltage to the grid greatly reduces their flow. This is the basis of
amplification: a small control signal greatly affects the device’s output.

Embedded Hardware Basics 29

plate

grid

cathode filament

Figure 1.20: On the left, a schematic of a dual triode
vacuum tube. The part itself is shown on the right.

Of course, in the real world tubes are almost unheard of today. When Bardeen, Brattain, and
Shockley invented the fransistor in 1947 they started a revolution that continues today. Tubes
are power hogs, bulky and fragile. Transistors—also three-terminal devices that amplify—
seem to have no lower limit of size and can run on picowatts (Figure 1.21).

collector

base

emitter

Figure 1.21: The schematic diagram of a bipolar
NPN transistor with labeled terminals.

A transistor is made from a single crystal, normally of silicon, into which impurities are doped
to change the nature of the material. The tube description showed how it’s a voltage-controlled
device; bipolar transistors are current-controlled.

Writers love to describe transistor operation by analogy to water flow or to the movement of
holes and carriers within the silicon crystal. These are at best poor attempts to describe the
quantum mechanics involved. Suffice to say that, in Figure 1.21, feeding current into the base
allows current to flow between the collector and emitter.

And that’s about all you need to know to get a sense of how a transistor amplifier works. The
circuit shown in Figure 1.22 is a trivialized example of one. A microphone—which has a tiny
output—drives current into the base of the transistor, which amplifies the signal, causing the
lamp to fluctuate in rhythm with the speaker’s voice.

A real amplifier might have many cascaded stages, each using a transistor to get a bit of ampli-
fication. A radio, for instance, might have to increase the antenna’s signal by many millions
before it gets to the speakers.

30 Chapter 1

+5 volts

+5 volts

L«Nw—@

Figure 1.22: A very simple amplifier.

Transistors are also switches, the basic element of digital circuits. The previous circuit is a
simplified—but totally practical —NOR gate (Figure 1.23). When both inputs are zero, both
transistors are off. No current flows from their collectors to emitters, so the output is 5 volts
(as supplied by the resistor).

+5

out

in1 in2

Figure 1.23: A NOR gate circuit.

If either input goes to a high level, the associated transistor turns on. This causes a conduction
path through the transistor, pulling “out” low. In other words, any input going to a one gives
an output of zero. Table 1.7 illustrates the circuit’s behavior.

It’s equally easy to implement any logic function.

The circuit we just analyzed would work; in the 1960s all “RTL” integrated circuits used
exactly this design. But the gain of this approach is very low. If the input dawdles between a
zero and a one, so will the output. Modern logic circuits use very high amplification factors,

Embedded Hardware Basics 31

Table 1.7: Truth table.

in1 in2 out
0 0 1
1 0
1 0 0
1 1 0

so the output is either a legal zero or one, not some in-between state, no matter what input is
applied.

The silicon is a conductor, but a rather lousy one compared to a copper wire. The resistance of
the device between the collector and the emitter changes as a function of the input voltage; for
this reason active silicon components are called semiconductors.

Transistors come in many flavors; the one we just looked at is a bipolar part, characterized

by high power consumption but (typically) high speeds. Modern ICs are constructed from
MOSFET—Metal Oxide Semiconductor Field Effect Transistor—devices, or variants thereof
(Figure 1.24). A mouthful? You bet. Most folks call these transistors FETs for short.

source

gate

drain

Figure 1.24: The schematic diagram of a MOSFET.

A FET is a strange and wonderful beast. The gate is insulated by a layer of oxide from a
silicon channel running between the drain and source. No current flows from the gate to the
silicon channel. Yet putting a bias voltage (like a tube, a FET is a voltage device) on the gate
creates an electrostatic field that reduces current flow between the other two terminals. Again,
no current flows from the gate. And when turned on, the source-drain resistance is much lower
than in a bipolar transistor. This means the part dissipates little power, a critical concern when
putting millions of these transistors on a single IC.

A diode is a two-terminal semiconductor that passes current in one direction only. In
Figure 1.25, a positive voltage will flow from the left to the right, but not in the reverse

>

Figure 1.25: The schematic symbol for a diode.

32 Chapter 1

direction. This seems a little thing, but it’s incredibly useful. Figure 1.26 shows a circuit
that implements an OR gate without a transistor.

out

in1

in2

+5
Figure 1.26: A diode OR circuit.

If both inputs are logic one, the output is a one (pulled up to +5 by the resistor). Any input
going low will drag the output low as well. Yet the diodes ensure that a low-going input
doesn’t drag the other input down.

1.5 Putting It Together: A Power Supply

A power supply is a simple yet common circuit that uses many of the components we’ve
discussed. The input is 110 volts AC (or 220 volts in Europe, 100 in Japan, 240 in the UK).
Output might be 5 volts DC for logic circuits. How do we get from high voltage AC input to
5 volts DC?

The first step is to convert the AC mains to a lower voltage AC, as follows:

AC mains
110 VAC 20VAC

Now let’s turn that lower voltage AC into DC. A diode does the trick nicely:

AC mains
110 VAC 20 VAC

Embedded Hardware Basics 33

The AC mains are a sine wave, of course. Since the diode conducts in one direction only, its
output looks like:

25

JA AN
|)

This isn’t DC ... but the diode has removed all the negative-going parts of the waveform.

But we’ve thrown away half the signal; it’s wasted. A better circuit uses four diodes arranged
in a bridge configuration as follows:

AC mains
110 VAC 20 VAC

NAWANAWANAWL
NIAVRTAVRYAYE
i/ERTETER IRV
I A I

The bridge configuration ensures that two diodes conduct on each half of the AC input, as
shown above. It’s more efficient and has the added benefit of doubling the apparent frequency,
which will be important when we’re figuring out how to turn this moving signal into a DC
level.

34 Chapter 1

The average of this signal is clearly a positive voltage; if only we had a way to create an aver-
age value. Turns out that a capacitor does just that:

AC mains

110 VAC 20 VAC

1

A huge-value capacitor filters best—typical values are in the thousands of microfarads.

The output is a pretty decent DC wave, but we’re not done yet. The load—the device this cir-
cuit will power—will draw varying amounts of current. The diodes and transformer both have
resistance. If the load increases, current flow goes up, so the drop across the parts will increase
(Ohm’s Law tells us E = IR, and as I goes up, so does E). Logic circuits are very sensitive to
fluctuations in their power, so some form of regulation is needed.

A regulator takes varying DC in and produces a constant DC level out. For example:

AC mains

110 VAC 20 VAC

The odd-looking part in the middle is a zener diode. The voltage drop across the zener is
always constant, so if, for example, this is a 3-volt part, the intersection of the diode and the
resistor will always be 3 volts.

The regulator’s operation is straightforward. The zener’s output is a constant voltage. The
triangle is a bit of magic—an error amplifier circuit—that compares the zener’s constant volt-
age to the output of the power supply (at the node formed by the two resistors). If the output
voltage goes up, the error amplifier applies less bias to the base of the transistor, making it
conduct less ... and lowering the supply’s output. The transistor is key to the circuit; it’s sort
of like a variable resistor controlled by the error amp.

Embedded Hardware Basics 35

If, say, 20 volts of unregulated DC go into the transistor from the bridge and capacitor, and the
supply delivers 5 volts to the logic, there’s 15 volts dropped across the transistor. If the supply

provides even just two amps of current, that’s 30 watts (15 volts times two amps) dissipated by
that semiconductor—a lot of heat! Careful heatsinking will keep the device from burning up.

1.5.1 The Scope

The oscilloscope (colloquially known as the “scope”) is the most basic tool used for trouble-
shooting and understanding electronic circuits. Without some understanding of this most criti-
cal of all tools, you’ll be like a blind person trying to understand color.

The scope has only one function: it displays a graph of the signal or signals you’re probing
(Figure 1.27). The horizontal axis is usually time; the vertical is amplitude, a fancy electronics
term for voltage.

Figure 1.27: A sea of knobs. Don’t be intimidated. There’s a logical grouping to these.
Master them and wow your friends and family. Photo courtesy of Tektronix, Inc.

1.5.2 Controls

In Figure 1.28, note first the two groups of controls labeled “vertical input 1" and “vertical
input 2.” This is a two-channel scope, by far the most common kind, which allows you to sam-
ple and display two different signals at the same time.

The vertical controls are simple. “Position” allows you to move the graphed signal up and
down on the screen to the most convenient viewing position. When you’re looking at two sig-
nals it allows you to separate them, so they don’t overlap confusingly.

www.newnespress.com

36 Chapter 1

TDS 220 WO CHANNEL 100V SAVE/RECALL ~ MEASURE acauRe | (CAUTOSET
DIGITIAL REAL-TIME OSCILLOSCOPE 1mis 7 () (] wmenus (]
UTILITY CURSOR DISPLAY HARDCOPY] RUN/STOP
(VERTICAL HORIZONTAL TRIGGER |
- A\POSITION | £\ POSITION {PosiTion]> LEVEL
A% A%
) MENy
CURSOR1 MENU cRSOR2 HOLDOFF
CH1 cH2 HORIZONTAL
MENU MENU MENU THIG%ENU
VOLTS/DIV VOLTS/DIV SEC/DIV SET LEVEL TO 50%
- ‘/ ‘/ FORCE TRIGGER
U 5V 2wV 5V 2mv 5V oMV TRIGGER VIEW
PROBE COMP
Vo CH1 EXT TRIG

Figure 1.28: Typical oscilloscope front panel. Picture courtesy Tektronix, Inc.

“Volts/div” is short for volts-per-division. You’ll note the screen is a matrix of 1 cm by 1 cm
boxes; each is a “division.” If the “volts/div” control is set to 2, then a two-volt signal extends
over a single division. A five-volt signal will use 2.5 divisions. Set this control so the signal is
easy to see. A reasonable setting for TTL (5-volt) logic is 2 volts/div.

The “coupling” control selects “DC”—which means what you see is what you get. That is, the
signal goes unmolested into the scope. “AC” feeds the input through a capacitor; since caps
cannot pass DC signals, this essentially subtracts DC bias (Figure 1.29).

The “mode” control lets us look at the signal on either channel, or both simultaneously.

2, e

Now check out the horizontal controls. These handle the scope’s “time base,” so called
because the horizontal axis is always the time axis.

The “position” control moves the trace left and right, analogously to the vertical channel’s
knob of the same name.

“Time/div” sets the horizontal axis’ scale. If set to 20 nsec/div, for example, each cm on the
screen corresponds to 20 nsec of time. Figure 1.30 shows the same signal displayed using
two different time base settings; it’s more compressed in the left picture simply because at
2000 psec/div more pulses occur in the 1 cm division mark.

[IleN A1 2000/

£0.00s 5008 _ sA1RUN

R N N L R S T E R A Y R R RIS YR P PR R I N RN R RIS

FH RUR RIS N A RS

TERS

Figure 1.29: The signal is an AC waveform riding on top of a constant DC signal. On the
left we’re observing it with the scope set to DC coupling; note how the AC component is moved
up by the amount of DC (in other words, the total signal is the DC component + the AC).
On the right we’ve changed the coupling control to “AC”; the DC bias is removed and the AC

component of the signal rides in the middle of the screen.

[0 DO NN

£0.00s 2.005/ _ £A1RUN

...;3

Figure 1.30: The left picture shows a signal with the time base set to 2000 psec/division;

the right is the same signal, but now we’re sweeping at 200 psec/division. Though the

data is unchanged, the signal looks compressed. Also note that the 5-volt signal extends
over 2.5 vertical boxes, since the gain is set to 2 volts/div. The first rule of scoping is

to know the horizontal and vertical settings.

38 Chapter 1

The last bank of knobs—those labeled “trigger”—are perhaps the most important of all.
Though you see a line on the screen, it’s formed by a dot swept across from left to right,
repeatedly, at a very high speed. How fast? The dot moves at the speed you’ve set in the
time/div knob. At 1 sec/div the dot takes 10 seconds to traverse the normal 10 cm-wide scope
screen. More usual speeds for digital work are in the few microseconds to nanosecond range,
so the dot moves faster than any eye can track.

Most of the signals we examine are more or less repetitive: it’s pretty much the same old
waveform over and over again. The trigger controls tell the scope when to start sweeping the
dot across the screen. The alternative—if the dot started on the left side at a random time—
would result in a very quickly scrolling screen, which no one could follow.

Twiddling the “trigger level” control sets the voltage at which the dot starts its inexorable left-
to-right sweep. Set it to 6 volts and the normal 5-volt logic signal will never get high enough
that the dot starts. The screen stays blank. Crank it to zero and the dot runs continuously,
unsynchronized to the signal, creating a scrambled mess on the scope screen.

Set trigger level to 2 volts or so, and as the digital signal traverses from O to 5 volts the dot
starts scanning, synchronizing to the signal.

It’s most dramatic to learn how this control works when you’re sampling a sine wave. As you
twirl the knob clockwise (from a low trigger voltage to a higher one) the displayed sine wave
shifts to the left. That is, the scan starts later and later since the triggering circuit waits for an
ever-increasing signal voltage before starting.

“Trigger Menu” calls up a number of trigger selection criteria. Select “trigger on positive
edge” and the scope starts sweeping when the signal goes from a low level through the trigger
voltage set with the “Trigger Level” knob. “Trigger on negative edge” starts the sweep when
the signal falls from a high level through the level.

Every scope today has more features than normal humans can possibly remember, let alone
use. Various on-screen menus let you do math on the inputs (add them and so on), store sig-
nals that occur once, and much, much more. The instrument is just like a new PC application.
Sure, it’s nice to read the manual, but don’t be afraid to punch a lot of buttons and see what
happens. Most functions are pretty intuitive.

1.5.3 Probes

A “probe” connects the scope to your system. Experienced engineers’ fingers are
permanently bent a bit, warped from too many years holding the scope probe in hand

Embedded Hardware Basics 39

while working on circuit boards. Though electrically the probe is just a wire, in fact there’s
a bit of electronics magic inside to propagate signals without distortion from your target sys-
tem to the scope.

So too for any piece of test equipment. The tip of the scope probe is but one of the two con-
nections required between the scope and your target system. A return path is needed, a ground
(Figure 1.31). If there’s no ground connection the screen will be nuts, a swirling mass of
meaningless scrolling waveforms.

Figure 1.31: Always connect the probe’s ground lead to the system.

Yet often we’ll see engineers probing nonchalantly without an apparent ground connection.
Oddly, the waves look fine on the scope. What gives? Where’s the return path?

It’s in the lab wall. Most electric cords, including the one to the scope and possibly to your tar-
get system, have three wires. One is ground. It’s pretty common to find the target grounded to
the scope via this third wire, going through the wall outlets. Of one thing be sure: even if this
ground exists, it’s ugly. It’s a marginal connection at best, especially when dealing with high-
speed logic signals or low level noise-sensitive analog inputs. Never, ever count on it even
when all seems well. Every bit of gear in the lab, probably in the entire building, shares this
ground. When the Xerox machine on the third floor kicks in, the big inductive spike from the
motor starting up will distort the scope signal.

No scope will give decent readings on high-speed digital data unless it is properly grounded.
I can’t count the times technicians have pointed out a clock improperly biased 2 volts above

www.newnespress.com

40 Chapter 1

ground, convinced they found the fault in a particular system, only to be bemused and
embarrassed when a good scope ground showed the signal in its correct O to 5 volt glory.
Ground the probe and thus the scope to your target using the little wire that emits from the
end of the probe. As circuits get faster, shorten the wire. The very shortest ground lead
results in the least signal distortion (see Figure 1.32.)

Figure 1.32: Here we probe a complex nonembedded circuit. Note the displayed
waveform. A person is an antenna that picks up the 60 Hz hum radiated from the
power lines in the walls around us. Some say engineers are particularly sensitive
(though not their spouses).

Yet most scope probes come with crummy little lead alligator clips on the ground wire that are
impossible to connect to an IC. The frustrated engineer might clip this to a clip lead that has

a decent “grabber” end. Those extra 6—12 inches of ground may very well trash the display,
showing a waveform that is not representative of reality. It’s best to cut the alligator clip off
the probe and solder a micrograbber on in its place.

One of the worst mistakes we make is neglecting probes. Crummy probes will turn that won-
derful 1-GHz instrument into junk. After watching us hang expensive probes on the floor,
mixed in with all sorts of other debris, few bosses are willing to fork over the $150 that
Tektronix or Agilent demands. But the $50 alternatives are junk. Buy the best and take good
care of them (see Figure 1.33.)

www.newnespress.com

Embedded Hardware Basics 41

Figure 1.33: Tektronix introduced the 545 scope back in the dark ages; a half-century later,
many are still going strong. Replace a tube from time to time and these might last forever. About
the size of a two-drawer file cabinet and weighing almost 100 pounds, they’re still favored by
Luddites and analog designers.

Endnotes
[1.1] Embedded Microcomputer Systems, Valvano, p. 509.
[1.2] Net Silicon, “Net50BlockDiagram.”
[1.3] Beginner’s Guide to Reading Schematics, Traister and Lisk, p. 49.

[1.4] H. Malcolm, Foundations of Computer Architecture. Additional references include
Stallings, W., Computer Organization and Architecture, Prentice Hall, fourth
edition, 1995; Tanenbaum, A. S., Structured Computer Organization, Prentice
Hall, third edition, 1990; Baron, R. J. and Higbie L., Computer Architecture,
Addison-Wesley, 1992; Kane, G. and Heinrich, J., MIPS RISC Architecture,
Prentice-Hall, 1992; and Patterson, D. A., and Hennessy, J. L., Computer
Organization and Design: The Hardware/Software Interface, Morgan Kaufmann,
third edition, 2005.

www.newnespress.com

42 Chapter 1

[1.5] National Semiconductor, “Geode User Manual,” Rev. 1, p. 13.

[1.6] Net Silicon, “Net+ARM40 Hardware Reference Guide,” pp. 1-5.

[1.7] “EnCore M3 Embedded Processor Reference Manual,” Revision A, p. 8.
[1.8] “EnCore PP1 Embedded Processor Reference Manual,” Revision A, p. 9.

www.newnespress.com

Logic Circuits

Jack Ganssle
Tammy Noergaard

2.1 Coding

The unhappy fact that most microprocessor books start with a chapter on coding and number
systems reflects the general level of confusion on this, the most fundamental of all computer
topics.

Numbers are existential nothings, mere representations of abstract quantitative ideas. We
humans have chosen to measure the universe and itemize our bank accounts, so we have
developed a number of arbitrary ways to count.

All number systems have a base, the number of unique identifiers combined to form numbers.
The most familiar is decimal, base 10, which uses the 10 symbols O through 9. Binary is base
2 and can construct any integer using nothing more than the symbols 0 and 1. Any number
system using any base is possible and in fact much work has been done in higher-order sys-
tems like base 64—which obviously must make use of a lot of odd symbols to get 64 unique
identifiers. Computers mostly use binary, octal (base 8), and hexadecimal (base 16, usually
referred to as “hex”; see Table 2.1).

Why binary? Simply because logic circuits are primitive constructs cheaply built in huge quanti-
ties. By restricting the electronics to two values only—on and off—we care little if the voltage
drifts from 2 to 5. It’s possible to build trinary logic, base 3, which uses 0, 1, and 2. The output
of a device in certain ranges represents each of these quantities. But defining three bands means
something like: O to 1 voltis a zero, 2 to 3 volts a 1, and 4 to 5 a 2. By contrast, binary logic
says anything lower than (for TTL logic) 0.8 volts is a 0 and anything above 2 a 1. That’s easy
to make cheaply.

Why hex? Newcomers to hexadecimal find the use of letters baffling. Remember that “A” is as
meaningless as “5”; both simply represent values. Unfortunately “A” viscerally means some-
thing that’s not a number to those of us raised to read.

Hex combines four binary digits into a single number. It’s compact. “8B” is much easier and
less prone to error than “10001011.”

44 Chapter 2

Table 2.1: Various coding schemes. BCD is covered
a bit later in the text.

Decimal Binary Octal Hex BCD
00 000000 00 00 0000 0000
01 000001 01 01 0000 0001
02 000010 02 02 0000 0010
03 000011 03 03 0000 0011
04 000100 04 04 0000 0100
05 000101 05 05 0000 0101
06 000110 06 06 00000110
07 000111 07 07 00000111
08 001000 10 08 0000 1000
09 001001 11 09 0000 1001
10 001010 12 0A 0001 0000
11 001011 13 0B 0001 0001
12 001100 14 0C 0001 0010
13 001101 15 0D 0001 0011
14 001110 16 0E 0001 0100
15 001111 17 OF 0001 0101
16 010000 20 10 00010110
17 010001 21 11 00010111
18 010010 22 12 0001 1000
19 010011 23 13 0001 1001
20 010100 24 14 0010 0000
21 010101 25 15 0010 0001
22 010110 26 16 0010 0010
23 010111 27 17 0010 0011
24 011000 30 18 0010 0100
25 011001 31 19 00100101
26 011010 32 1A 00100110
27 011011 33 1B 00100111
28 011100 34 1C 0010 1000
29 011101 35 1D 0010 1001
30 011110 36 1E 0011 0000
31 011111 37 1F 0011 0001
32 100000 40 20 00110010

www.newnespress.com

Logic Circuits 45

Why octal? Base 8 is an aberration created by early programmers afraid of the implications
of using letters to denote numbers. It’s a grouping of three binary digits to represent the quan-
tities O through 7. It’s less compact than hex but was well suited to some early mainframe
computers that used 36-bit words. Twelve octal digits exactly fills one 36-bit word (12 times

3 bits per digit). Hex doesn’t quite divide into 36 bits evenly. Today, though, virtually all com-
puters are 8, 16, 32, or 64 bits, all of which are cleanly divisible by 4, so the octal dinosaur is
rarely used.

To convert from one base to another, just remember that the following rule constructs any inte-
ger in any number system:

Number = -+ + C, X b* + C3; X b* + C, X b*> + C; X b' + C,

Each of the C’s are coefficients—the digit representing a value, and b is the base. So, the deci-
mal number 123 really is three digits that represent the value:

123=1X10*+2x 10" +3

D’oh, right? This pedantic bit of obviousness, though, tells us how to convert any number to
base 10. For binary, the binary number 10110:

10110, =1 X2 +0x 23 +1 X 22+1 x2' + 0 x 20
:2210

A1C in hex is:

AlC;s=A X 162 +1 X 16" + C x 16°
=10 X 16* +1 X 16! + 12 X 16°
:258810

Converting from decimal to another base is a bit more work. First, you need a cheat sheet, one
that most developers quickly memorize for binary and hex, as shown in Table 2.2.

To convert 1234 decimal to hex, for instance, use the table to find the largest even power of
16 that goes into the number (in this case 162, or 256 base 10). Then see how many times you
can subtract this number without the result going negative. In this case, we can take 256 from
1234 four times. The first digit of the result is thus 4.

First digit = 4. Remainder = 1234 — 4 * 256 = 210

Now, how many times can we subtract 16! from the remainder (210) without going negative?
The answer is 13, or D in hex.

Second digit = D. Remainder = 210 — 13*16= 2

46 Chapter 2

Table 2.2: Binary and hex cheat sheet.

Decimal Binary Hex
1 20 16°
2 2!
4 22
8 23
16 24 16"
32 2%
64 26
128 27
256 28 162
512 2°
1024 210
2048 b
4096 212 163
8192 213
16384 214
32768 218
65536 216 164

Following the same algorithm for the 160 placeholder, we see a final result of 4D2. For
another example, convert 41007 decimal to hex:

163 goes into 41007 10 times before the remainder goes negative, so the first digit is 10
(A in hex).

The remainder is: 41007 — 10 * 16> = 47

162 cannot go into 47 without going negative. The second digit is therefore 0.
16! goes into 47 twice. The next digit is 2.

Remainder = 47 -2 * 16! = 15

The final digit is 15 (F in hex).

Final result: AO2F

2.1.1 BCD

BCD stands for binary coded decimal. The BCD representation of a number is given in groups
of four bits; each group expresses one decimal digit. The normal base 2 binary codes map to

www.newnespress.com

Logic Circuits 47

the 10 digits O through 9. Just as the decimal number 10 requires two digits, its equivalent in
BCD uses two groups of four bits: 0001 0000. Each group maps to one of the decimal digits.

It’s terribly inefficient, because the codes from 1010 to 1111 are never used. Yet BCD matches
the base 10 way we count. It’s often used in creating displays that show numerics.

2.2 Combinatorial Logic

Combinatorial logic is that whose state always reflects the inputs. There’s no memory; past
events have no impact on present outputs.

An adder is a typical combinatorial device: the output is always just the sum of the inputs—no
more, no less.

The easiest way to understand how any combinatorial circuit works—be it a single component
or a hundred interconnected ICs—is via a truth table, a matrix that defines every possible
combination of inputs and outputs. We know, for example, that a wire’s output is always the
same as its input, as reflected in its table (see Table 2.3).

Table 2.3: The truth table for a wire’s output and input.

In

Out

0

0

1

1

Gates are the basic building blocks of combinatorial circuits. Though there’s no limit to the
varieties available, most are derived from AND, OR, and NOT gates.

2.2.1 NOT Gate

The simplest of all gates inverts the input. It’s the opposite of a wire, as shown by the truth
table in Table 2.4.
Table 2.4: A gate’s truth table.

In

Out

0

1

1

0

The Boolean expression is a bar over a signal: the NOT of an input A is A. Any expression can
have an inverse, A + B is the NOT of A + B.

The schematic symbol is:

48 Chapter 2

Note the circle on the device’s output node. By convention a circle always means inversion.
Without it, this symbol would be a buffer: a device that performs no logic function at all
(rather like a piece of wire, though it does boost the signal’s current). On a schematic, any cir-
cle appended to a gate means invert the signal.

2.2.2 AND and NAND Gates

An AND gate combines two or more inputs into a single output, producing a 1 if all the inputs
are ones (see Table 2.5). If any input is zero, the output will be too.

Table 2.5: The truth table for an AND gate.

Input1 | Input2 Output

0 0 0
0 1 0
1 0 0

1 1 1

The AND of inputs A and B is expressed as: output = AB

On schematics, a two-input AND looks like:

NAND is short for NOT-AND, meaning the output is zero when all inputs are one. It’s an
AND with an inverter on the output. So the NAND of inputs A and B is: output = AB.

Schematically a circle shows the inversion:

The NAND truth table is shown in Table 2.6.
Table 2.6: The truth table for a NAND gate.

Input1 Input2 | Output
0 0 1
0 1 1
1 0 1
1 1 0

Logic Circuits

49

The AND and NAND gates we’ve looked at all have two inputs. Though these are very
common, there’s no reason not to use devices with three, four, or more inputs. Here’s
the symbol for a 13-input NAND gate ... its output is zero only when all inputs

are one:

2.2.3 OR and NOR Gates

An OR gate’s output is true if any input is a one (see Table 2.7). That is, it’s zero only if every

input is zero.

Table 2.7: An OR gate’s truth table.

Input1 | Input2 Output
0 0 0
0 1 1
1 0 1
1 1 1

The OR of inputs A and B is: output = A + B

Schematically:

NOR means NOT-OR and produces outputs opposite that of OR gates (see Table 2.8).

50 Chapter 2

Table 2.8: A NOR gate’s truth table.

Input1 | Input2 Output

0 0 1
0 1 0
1 0 0

1 1 0

The NOR equation is: output = A + B The gate looks like:

2.2.4 XOR

XOR is short for Exclusive-OR. Often used in error correction circuits, its output goes true if
one of the inputs, but not both, is true (see Table 2.9). Another way of looking at it is that the
XOR produces a true if the inputs are different.

Table 2.9: An XOR truth table.

Input1 Input2 | Output
0 0 0
0 1 1
1 0 1
1 1 0

The exclusive OR of A and B is: output = A © B
The XOR gate schematic symbol is:

2.2.5 Circuits

Sometimes combinatorial circuits look frighteningly complex, yielding great job security for
the designer. They’re not. All can be reduced to a truth table that completely describes how
each input affects the output(s). Though there are several analysis techniques, truth tables are
usually the clearest and easiest to understand.

Logic Circuits 51

A proper truth table lists every possible input and output of the circuit. It’s trivial to produce a cir-
cuit from the complete table. One approach is to ignore any row in the table for which the output is
a zero. Instead, write an equation that describes each row with a true output, and then OR these.

Consider the XOR gate previously described. The truth table (Table 2.9) shows true outputs
only when both inputs are different. The Boolean equivalent of this statement, assuming A and
B are the inputs, is:

XOR = AB + AB

The circuit is just as simple:

XOR

>
A

Note that an AND gate combines inputs A and B into AB; another combines the inversions of
A and B. An OR gate combines the two product terms into the exclusive OR.

How about something that might seem harder? Let’s build an adder, a device that computes
the sum of two 16-bit binary numbers.

We could create a monster truth table of 32 inputs, but that’s as crazy as the programmer who
eschews subroutines in favor of a single, huge, monolithic main () function. Instead, realize
that each of the 16 outputs (A, to A;s) is merely the sum of the two single-bit inputs, plus the
carry from the previous stage. A 16-bit adder is really nothing more than 16 single-bit addition
circuits. Each of those has a truth table as shown in Table 2.10.

Table 2.10: The single-bit addition circuit truth table.

A, B, CARRY;,, SUM,, CARRY,,,
0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

52 Chapter 2

The two outputs (the sum plus a carry bit) are the sum of the A and B inputs, plus the carry out
from the previous stage. (The very first stage, for Ay and B\, has CARRY;, connected to zero.)

The 1-bit adder has two outputs: sum and carry. Treat them independently; we’ll have a circuit
for each.

The trick to building combinatorial circuits is to minimize the amount of logic needed by not
implementing terms that have no effect. In the truth table above we’re only really interested in
combinations of inputs that result in an output of 1, since any other combination results in 0,
by default.

For each truth table row which has a one for the output, write a Boolean term, and then OR
each of these as follows:

SUM, = Zan CARRY, + A B CARRY, +A B CARRY, + A B CARRY,,
CARRY,, = A B CARRY, + A B CARRY, + A B CARRY, + A B CARRY_
Each output is a different circuit, sharing only inputs. This implementation could be simpli-

fied—note that both outputs share an identical last product term—but in this example we’ll
pedantically leave it unminimized.

Ay ‘
B, {
CARRY,, ‘

—

—

n SUM,,

—

L/

R

—_/

CARRY o
—
L/

Logic Circuits 53

The drawing looks intricate, but does nothing more than the two simple equations above.
Drawing the entire circuit for two 16-bit input numbers would cover a rather large sheet of
paper, yet is merely a vast amount of duplicated simplicity.

And so, just as programmers manipulate the very smallest of things (ones and zeroes) in mas-
sive quantities to create applications, digital designers use gates and other brain-dead bits of
minimalism to build entire computers.

This is the essence of all combinatorial design. Savvy engineers will work hard to reduce the
complexity of a circuit and therefore reduce parts count, by noticing repetitive patterns, using
truth tables, DeMorgan’s theorem, and other tools. Sometimes it’s hard to figure out how a cir-
cuit works, because we’re viewing the result of lots of work done to minimize part count. It’s
analogous to trying to make sense of an object file, without the source. Possible, but tedious.

2.2.6 Tristate Devices

Though all practical digital circuits are binary, there are occasions when it’s useful to have a
state other than a zero or one. Consider busses: a dozen interconnected RAM chips, for exam-
ple, all use the same data bus. Yet if more than one tries to drive that bus at a time, the result
is babble, chaos. Bus circuits expect each connected component to behave itself, talking only
when all other components are silent.

But what does the device do when it is supposed to be quiet? Driving a one or zero is a seri-
ously Bad Thing because either will scramble any other device’s attempt to talk. Yet ones and
zeroes are the only legitimate binary codes.

Enter the tristate. This is a nonbinary state when a bus-connected device is physically turned
off. It’s driving neither a zero nor a one; rather, the output floats, electrically disconnected
from the rest of the circuit.

Bus devices like memories have a control pin, usually named “Output Enable” (OE for short),
that, when unasserted, puts the component’s output pins into a tristate condition, floating them
free of the circuit.

2.3 Sequential Logic

The output of sequential logic reflects both the inputs and the previous state of the

circuit. That is, it remembers the past and incorporates history into the present. A counter
whose output is currently 101, for instance, remembers that state to know the next value must
be 110.

Sequential circuits are always managed by one or more clocks. A clock is a square wave (or at
least one that’s squarish) that repeats at a fixed frequency. Every sequential circuit is idle until
the clock transitions; then, for a moment, everything changes. Counters count. Timers tick.

54 Chapter 2

UARTS squirt a serial bit. The clock sequences a series of changes; the circuit goes idle after
clock changes to allow signals to settle out.

The clock in a computer ensures that every operation has time to complete correctly. It takes
time to access memory, for example. A 50 nsec RAM needs 50 nsec to retrieve data after
being instructed as to which location to access. The system clock paces operations so the data
has time to appear.

Just as gates are the basic units of combinatorial circuits, flip-flops form all sequential logic. A
flip-flop (aka a “flop” or “bistable”) changes its output based on one or more inputs, after the
supplied clock transitions. Databooks show a veritable zoo of varieties. The simplest is the set-
reset flop (SR for short), which looks like Figure 2.1.

AAA — +

B3
—>

Figure 2.1: SR flip-flop.

To understand how this works, pretend input A is a zero. Leave B open. It’s pulled to a one by
the resistor. With A low, NAND gate 1 must go to a one, supplying a one to the input gate 2,
which therefore, since B is high, must go low. Remove input A and gate 2 still drives a zero
into gate 1, keeping output 1 high. The flop has remembered that A was low for a while. Now
momentarily drive B low. Like a cat chasing its tail, the pattern reverses: output 1 goes high
and 2 low.

What happens if we drive A and B low and release them at the same time? No one knows.
Don’t do that.

Flip flops are latches, devices that store information. A RAM is essentially an array of many
latches.

Possibly the most common of all sequential components is the D flip-flop. As Figure 2.2
shows, it has two inputs and one output. The value at the D input is transferred to the Q output
when clock transitions. Change the D input and nothing happens till clock comes again.

Logic Circuits 55

Y s BN e B e
— |

Q

Figure 2.2: Note that the output of the D flip-flop changes only on the leading edge of clock.
(Some versions also have set and clear inputs that drive Q to a high or low regardless of the
clock. It’s not unusual to see a Q output as well, which is the inversion of Q.)

Clearly the D flop is a latch (also known as a register). String eight of these together, tied to
one common clock, and you’ve created a byte-wide latch, a parallel output port.

Another common, though often misunderstood, synchronous device is the JK flip-flop, named
for its inventor (John Kardash). Instead of a single data input (D on the D flip-flop), there are
two, named J and K. Like the D, nothing happens unless the clock transitions.

But when the clock changes, if J is held low, then the Q output goes to a zero (it follows J). If
J is one and K zero, Q also follows J, going to a one.

But if both J and K are one, then the output toggles—it alternates between zero and one every
time a clock comes along.

The JK flip-flop can form all sorts of circuits, like the following counter:

CLK

56 Chapter 2

Every clock transition causes the three outputs to change state, counting through the binary
numbers. Notice how the clock paces the circuit’s operation; it keeps things happening at the
rate the designer desires.

Counters are everywhere in computer systems; the program counter sequences fetches from
memory. Timer peripherals and real-time clocks are counters.

The example above is a ripple counter, so called because a binary pattern ripples through each
flip-flop. That’s relatively slow. Worse, after the clock transitions it takes some time for the
count to stabilize; there’s a short time when the data hasn’t settled. Synchronous counters are
more complex but switch rapidly, with virtually no settle time (Figure 2.3).

+]
| |
J OQO J QQ1 J QQ2
>
K Q ~‘:K Q K Q
CLK — :

Figure 2.3: A 3-bit synchronous counter.

Cascading JK flip-flops in a different manner creates a shift register. The input bits march
(shift) through each stage of the register as the clock operates (Figure 2.4).

[] [

J IPRE g J /PRE g J/PRE gl

IN ———
CLK —] CLK — CLK
||jK Qp K Qp K Qp—
CLK + l

Figure 2.4: A 3-bit shift register.

Putting a lot of what we’ve covered together, let’s build a simplified UART and driver for an
RS-232 device (see Figure 2.5). This is the output part of the system only; considerably more
logic is needed to receive serial data, and this drawing doesn’t show the start and stop bits. But
it shows the use of a counter, a shift register, and discrete parts.

Logic Circuits 57

RS-232 data is slow by any standard. Normal microprocessor clocks are far too fast for, say,
9600 baud operation. The leftmost chip is an eight-stage counter. It divides the input fre-
quency by 256. So a 2.5 MHz clock, often found in slower embedded systems, divided as
shown, provides 9600 Hz to the shift register.

The register is one that can be parallel-loaded; when the computer asserts the LOAD signal,
the CPU’s data bus is preset into the 8 stage shift register IC (middle of the drawing). The
clock makes this 8-bit parallel word, loaded into the shift register, march out to the QH output,
one bit at a time. A simple transistor amplifier translates the logic’s 5 volt levels to 12 volts for
the RS-232 device.

—IS0
—is1
—g/ENT/RCOp—
—g/ENP
CLK——{>CLK
—A QA—
B QB—
cC Qc—
D QD—
—E QE—
—F QFf— ——dSH//LD
G QG— —>CLKINH
H QH— >CLK +12
L —ISER
— T—A
B
Ic
—D
E RS-232 OUT
LCAD — :g
DATABUS | H QH AVAVAY,
/QHP—

Figure 2.5: A simplified UART.

2.3.1 Logic Wrap-Up

Modern embedded systems do use all these sorts of components. However, most designers use
integrated circuits that embody complex functions instead of designing with lots of gates and
flops. A typical IC might be an 8-bit synchronous counter or a 4-bit arithmetic-logic unit (that
does addition, subtraction, shifting, and more).

Yet you’ll see gates and flops used as “glue” logic, parts needed to interface big complex ICs
together.

58

Chapter 2

2.4 Putting It All Together: The Integrated Circuit

Gates, along with the other electronic devices that can be located on a circuit, can be com-
pacted to form a single device, called an integrated circuit (IC). ICs, also referred to as chips,
are usually classified into groups according to the number of transistors and other electronic
components they contain, as follows:

SS1I (small-scale integration) containing up to 100 electronic components per chip

MSI (medium-scale integration) containing between 100-3,000 electronic components
per chip.

LSI (large-scale integration) containing 3,000—100,000 electronic components per chip

VLSI (very large-scale integration) containing between 100,000—1,000,000 electronic
components per chip

ULSI (ultra large-scale integration) containing over 1,000,000 electronic components
per chip

ICs are physically enclosed in a variety of packages that include SIP, DIP, flat pack, and oth-
ers (see Figure 2.6). They basically appear as boxes with pins protruding from the body of the
box. The pins connect the IC to the rest of the board.

Ty (T

SIP

Flat pack Metal can
Figure 2.6: IC packages.

Physically packaging so many electronic components in an IC has its advantages as well as
drawbacks. These include:

Size. ICs are much more compact than their discrete counterparts, allowing for smaller
and more advanced designs.

Logic Circuits 59

Speed. The buses interconnecting the various IC components are much, much smaller
(and thus faster) than on a circuit with the equivalent discrete parts.

Power. 1Cs typically consume much less power than their discrete counterparts.

Reliability. Packaging typically protects IC components from interference (dirt,
heat, corrosion, etc.) far better than if these components were located discretely
on a board.

Debugging. It is usually simpler to replace one IC than try to track down one compo-
nent that failed among 100,000 (for example) components.

Usability. Not all components can be put into an IC, especially those components
that generate a large amount of heat, such as higher value inductors or high-powered
amplifiers.

In short, ICs are the master processors, slave processors, and memory chips located on embed-
ded boards (see Figures 2.7a—e).

* Master Processor: Geode

o GX533@1.1w (x86)
Data Digital RGB .
SBBEM *+ Cont l: > TFT * Memory: ROM (BIOS is
(32Mx16 [fess’-oNo” | AMD Geode™ located in), SDRAM
or SDCLKs GX 533@1.1W Analog RGB . .
128Mx16)[Processor »| CRT * Input/Output Devices:
- PCI3.3V C85535, Audio Codec...
= - * Buses: LPC,PCI
A A
Y
L] Clock
14 MHz = System FS2 JTAG 33MHz | Ethernet
T_|Generator Control Header < > Con?rror}ﬁar
A
\/ \/
USB Ports
< > AMD Geode™
(2X2) CS5535 IDE/Flash POI’t‘ IDE Header
Line Out Companion " | (44-pin, 2 mm)
Headoh out Audio Device
eaapnhone Ou Codec [> LPC
Microphone In <e—— [BIOS
/
tpcBus §
GPIOs Serial Data " | LPC Header
Power Button >

Figure 2.7a: AMD/National Semiconductor x86 reference board.[?]

© 2004 Advanced Micro Devices, Inc. Reprinted with permission.

60 Chapter 2

ICs
IEEE 1284,
Shared RAM, | < Master Processor: Net+ARM ARM7
Register- |, Memory: Flash, RAM
10Base-T Thinnet 10/100Base-T Serial Mode v: ’
* Input/Output Devices: 10Base-T trans-
ceiver, Thinnet transceiver, 100Base-T
- transceiver, RS-232 transceiver, 16646
10Base-T | Thinnet 100Base-T RS232 16646 transceiver, etc.
Xevr Xevr Xevr Xcvr Xcvr
Ethernet L
NET+ARM Chip
System Bus 8/16/32
RAM Memory Application
Flash Memory 256Kx32 Specific
Hardware

Figure 2.7b: Net Silicon ARM7 reference board.[?2]

Au 1500 —— | PCl Interface| /CS
CPU
core

* Master Processor: Encore M3
(Au-1500-based) processor

IDE Interface| ¢ Memory: Flash, SODIMM
Flash Memory N Floppy/ ¢ Input/Output Devices: Super I/O, etc.
Memory Interface Parallel Port

i Keyboard &
SouthBridge
Ethernet Mouse Ports
>
Ports (2) (Super I/0)
Peripheral IrDA
Serial Port (1) |+—» Interface Port
Serial Ports (2)
USB Ports (2) |[«—

EJTAG Port (1)

A

PC1 Host
Controller

| 4

Figure 2.7c: Ampro MIPS reference board.[23]

Logic Circuits 61

Motorola MP!

CPU

C8245

PowerPC™
603e core

SODIMM [«—>|
Flash Memory
Memory Controller

PCI
Bridge

VIAVT82C686B

PCI
Bus

Serial
Debug Port [+

JTAG Miscellaneous
Power Clock
Supply 33 MHz

Super /0 &
Controller
(Southbridge)

ICs

* Master Processor: MPC8245
IDE Interface | ¢ Memory: Flash, SODIMM

¢ Input/Output Devices: Super I/O,

Floppy/ 82559 Transceiver, etc.
Parallel Port

Keyboard &
Mouse Ports

IrDA
Port

Serial Ports (2)

L]

<«—»| USB Ports (4)

N Ethernet Port
Intel 82559ER
PClI Interface

Figure 2.7d: Ampro PowerPC reference board.

[2.4]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

Video Processor

A

Audio Processor

NVM

A

[°C Bus

/

9]

S

A

Tuner

&
<€

M37273

¢ Master Processor: M37273 (8-bit)
TV Microcontroller

¢ Memory: NVM

¢ Input/Output Devices: Video processor,
Audio Processor, Tuner, etc.

Figure 2.7e: Mitsubishi analog TV reference board.

Endnotes

[2.1] National Semiconductor, “Geode User Manual,” Rev. 1, p. 13.

[2.2] Net Silicon, “Net+ARM40 Hardware Reference Guide,” pp. 1-5.

[2.3] “EnCore M3 Embedded Processor Reference Manual,” Revision A, p. 8.

[2.4] “EnCore PP1 Embedded Processor Reference Manual,” Revision A, p. 9.

This page intentionally left blank

Embedded Processors

Tammy Noergaard

3.1 Introduction

Processors are the main functional units of an embedded board and are primarily responsible
for processing instructions and data. An electronic device contains at least one master proces-
sor, acting as the central controlling device, and can have additional slave processors that work
with and are controlled by the master processor. These slave processors may either extend the
instruction set of the master processor or act to manage memory, buses, and I/O (input/output)
devices. In the block diagram of an x86 reference board, shown in Figure 3.1, the Atlas STPC
is the master processor, and the super I/O and Ethernet controllers are slave processors.

SDRAM
sobin €= | g | = SRS
CRT/TFT to ‘ STPCOAllaS| |qummmmp IDE to
Baseboard (Computer Baseboard
In a Chip)
Keyboard
: | M Ethernet
Séa':gzltjnzeartg Host- Controller
Peripheral
Serial Ports = Interface ' ' USB (4) to
To Baseboard Baseboard
VN
Internal Bus
_’ Real Time
Clock (RTC)
Parallel/Floppy A 4
to
Baseboard ‘ ’
Super 1/0 — BIOS

Controller

Infrared to ' '
Baseboard

Figure 3.1: Ampro’s Encore 400 board.[']

64 Chapter 3

As shown in Figure 3.1, embedded boards are designed around the master processor. The
complexity of the master processor usually determines whether it is classified as a microproc-
essor or a microcontroller. Traditionally, microprocessors contain a minimal set of integrated
memory and I/O components, whereas microcontrollers have most of the system memory and
I/0 components integrated on the chip. However, keep in mind that these traditional defini-
tions may not strictly apply to recent processor designs. For example, microprocessors are
increasingly becoming more integrated.

Why Use an Integrated Processor?

Although some components, like I/O, may show a decrease in performance when inte-
grated into a master processor as opposed to remaining a dedicated slave chip, many
others show an increase in performance because they no longer have to deal with the
latencies involved with transmitting data over buses between processors. An integrated
processor also simplifies the entire board design since there are fewer board compo-
nents, resulting in a board that is simpler to debug (fewer points of failure at the board
level). The power requirements of components integrated into a chip are typically a lot
less than those same components implemented at the board level. With fewer compo-
nents and lower power requirements, an integrated processor may result in a smaller and
cheaper board. On the flip side, there is less flexibility in adding, changing, or removing
functionality, since components integrated into a processor cannot be changed as easily
as if they had been implemented at the board level.

There are literally hundreds of embedded processors available, and not one of them currently
dominates embedded system designs. Despite the sheer number of available designs,
embedded processors can be separated into various “groups” called architectures. What dif-
ferentiates one processor group’s architecture from another is the set of machine code instruc-
tions that the processors within the architecture group can execute. Processors are considered
to be of the same architecture when they can execute the same set of machine code instruc-
tions. Table 3.1 lists some examples of real-world processors and the architecture families
they fall under.

Table 3.1: Real-world architectures and processors.

Architecture Processor Manufacturer
AMD AuTxxx Advanced Micro Devices, ...
ARM ARM?7, ARMO, ... ARM, ...

C16X C167CS, C165H, C164Cl, ... Infineon, ...
ColdFire 5282,5272,5307, 5407, ... Motorola/Freescale, ...

Embedded Processors

65

Table 3.1: Continued

Architecture Processor Manufacturer

1960 1960 Vmetro, ...

M32/R 32170,32180, 32182, 32192, ... Renesas/Mitsubishi, ...

M Core MMC2113, MMC2114, ... Motorola/Freescale

MIPS32 R3K, R4K, 5K, 16, ... MTl4kx, IDT, MIPS Technologies, ...

NEC Vr55xx, Vr54xx, Vrd1xx NEC Corporation, ...

PowerPC 82xx, 74xx,8xx,7xx,6xxX,5xX,4xx IBM, Motorola/Freescale, ...

68k 680x0 (68K, 68030, 68040, 68060, ...), 683xx Motorola/Freescale, ...

SuperH (SH) SH3 (7702,7707, 7708,7709), SH4 (7750) Hitachi, ...

SHARC SHARC Analog Devices, Transtech DSP,
Radstone, ...

strongARM strongARM Intel, ...

SPARC UltraSPARC Il Sun Microsystems, ...

TMS320C6xxx TMS320C6xxx Texas Instruments, ...

x86 X86 [386,486,Pentium (11, I, IV)...] Intel, Transmeta, National
Semiconductor, Atlas, ...

TriCore TriCorel, TriCore2, ... Infineon, ...

3.2 ISA Architecture Models

The features that are built into an architecture’s instruction set are commonly referred to as the
Instruction Set Architecture, or ISA. The ISA defines such features as the operations that can
be used by programmers to create programs for that architecture, the operands (data) that are
accepted and processed b+-y an architecture, storage, addressing modes used to gain access

to and process operands, and the handling of interrupts. These features are described in more
detail in this section because an ISA implementation is a determining factor in defining impor-
tant characteristics of an embedded design, such as performance, design time, available func-
tionality, and cost.

3.2.1 Operations

Operations are made up of one or more instructions that execute certain commands. (Note that
operations are commonly referred to simply as instructions.) Different processors can execute

the exact same operations using a different number and different types of instructions. An ISA
typically defines the types and formats of operations.

3.2.1.1 Types of Operations

Operations are the functions that can be performed on the data, and they typically include
computations (math operations), movement (moving data from one memory location/register

66 Chapter 3

to another), branches (conditional/unconditional moves to another area of code to process),
input/output operations (data transmitted between I/O components and master processor), and
context switching operations (where location register information is temporarily stored when
switching to some routine to be executed and, after execution, by the recovery of the tempo-
rarily stored information, there is a switch back to executing the original instruction stream).

The instruction set on a popular lower-end processor, the 8051, includes just over 100 instruc-
tions for math, data transfer, bit variable manipulation, logical operations, branch flow and
control, and so on. In comparison, a higher-end MPC823 (Motorola/Freescale PowerPC)

has an instruction set a little larger than that of the 8051 but with many of the same types of
operations contained in the 8051 set, along with an additional handful, including integer
operations/floating-point (math) operations, load and store operations, branch and flow
control operations, processor control operations, memory synchronization operations,
PowerPC VEA operations, and so on. Figure 3.2a lists examples of common operations
defined in an ISA.

Math and Logical Shift/Rotate Load/Store Compare Instructions...
Move Instructions...
Add Logical Shift Right Stack PUSH Branch Instructions ...
Subtract Logical Shift Left StackPOP | | ...
Multiply Rotate Right Load
Divide Rotate Left Store
AND | |
OR
XOR

Figure 3.2a: Sample ISA operations.

In short, different processors can have similar types of operations, but they usually have differ-
ent overall instruction sets. As mentioned, what is also important to note is that different archi-
tectures can have operations with the same purpose (add, subtract, compare, etc.), but

the operations may have different names or internally operate much differently, as seen in
Figures 3.2b and c.

CMP crfD,L,rA,rB ...

a « EXTS(rA)

b « EXTS(rB)

if a<b then ¢ <~ 0b100

else if a>b then ¢ « 0b010

else ¢ « 0b001

CRI4 * crfD-4 *crfD +3] « ¢ || XER[SO}

Figure 3.2b: MPC823 compare operation.[3‘2]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

Embedded Processors 67

C.cond.S fs, ft
C.cond.Dfs, ft...

if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or The MIPS32/MIPS 1 compare
QNaN (ValueFPR (fs, fmt)) or QNaN(ValueFPR(ft, fmt)) then) . i .
less « false operation is a floating point

equal « false operation. The value in floating
unordered ¢ true . . .

if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or point register fs is compared to
(cond3 and (QNaN(ValueFPR(fs,fmt)) or QNaN(ValueFPR(ft,fmt)))) then . . .
SignalException(InvalidOperation) the value in ﬂoat,ng pOInt reg-
epdis ister ft. The MIPS | architecture
else)) .)
less ¢ ValueFPR(fs, fmt) <fmt ValueFPR(ft, fmt) defines a single floating point
equal < ValueFPR(fs, fmt) =fmt ValueFPR(ft, fmt) Condiﬁon COde, ,'mp/emented
unordered « false op
endif as the coprocessor 1 condition
condition ¢ (cond2 and less) or (condl and equal) Signal (Cp1COnd) and the Cblt ,'n
or (cond0 and unordered) i
SetFPConditionCode (cc, condition) the FP Control/Status register.

Figure 3.2c: MIPS32/MIPS | - compare operation.[3'3]

3.2.1.2 Operation Formats

The format of an operation is the actual number and combination of bits (1’s and 0’s) that rep-
resent the operation and is commonly referred to as the operation code, or opcode. MPC823
opcodes, for instance, are structured the same and are all 6 bits long (0-63 decimal) (see
Figure 3.3a). MIPS32/MIPS I opcodes are also 6 bits long, but the opcode can vary as to
where it is located, as shown in Figure 3.3b. An architecture like the SA-1100, which is based
on the ARM v4 Instruction Set, can have several instruction set formats, depending on the
type of operation being performed (see Figure 3.3c).

1 [] Reserved
CMP crfD,L,rA,rB [s [em o] A | B | ooooooco00 o]
0 56 891011 1516 20 21 30 31

Figure 3.3a: MPC823 “CMP” operation size.[3*]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

C condS fS, ft ADD rd, rs,rt
" —
31 2625 2120 1615 1110 876543 0 31 2625 2120 1615 1110 65 0
COP1 Al FC SPECIAL 0 ADD
010001 fmt ft fs cc |0 ol 11 cond 000000 rs rt rd 00000 | 100000
6 5 5 5 3 11 2 4 6 5 5 5 5 6

Figure 3.3b: MIPS32/MIPS | “CMP” and “ADD” operation sizes and locations.[>-°]

68 Chapter 3

Instruction Type 31 2827 1615 87 0

"""""""""" Data Processing1/PSR Transfer [cond [o of i[opeode [s] #n Rd Operand2

Multiply | cond | 0000 00|A[s| Rd An Rs [1001| Am

Long Multiply | cond | 0000 1|ulAls| RdHi | Rdlo | Rs [1001| Rm

Swap Cond 000 10|Bl0O Rn Rd (0000|1001 Rm

Load & Store Byte/Word | cond | 01| 1|p|ulBjW|L| Rn Rd Offset
Halfword Transfer : Immediate Offset | cond | 10 o|p|u|sw[L| Rn Register List

Halfword Transfer : Register Offset | cond | 00 o[p|u[1|w[L| FRn Rd | Offset1 |1|S|H|1 |Offset2

Branch | cond 00 o[P|ufojw|L| Rn Rd |0 0 00[1[S|H[1| Rm

Branch Exchange | cond | 10 1|L Offset
Coprocessor Data Transfer | cond [0001/0010/1111|1111[1111/ 0001 Rn
Coprocessor Data Operation | cond | 1 1 0|P u| N|w| L| Rn CRd | CPNum Offset

Coprocessor Register Transfer | cond |1 110| opt CRn | CRd | CPNum| Op2 [0| CRm
v Software Interrupt | cond |1 11 0| opt[L| crn Rd | cPNum| Op2 [1| CRm

Cond 1111 SWI Number

1 - Data Processing OpCodes

0000 = AND - Rd: = Op1 AND Op2

0001 = EOR - Rd: = Op1 EOR Op2

0010 = SUR - Rd: = Op1 — Op2

0011 = RSB - Rd: = Op2 - Op1

0100 = ADD - Rd: = Op1 + Op2

0101 = ADC - Rd: =Op1 + Op2 + C

0110 = SEC - Rd: = Op2 - Op1 + C -1

0111 =RSC - Rd:=0p2 - Op1 +C - 1

1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 — Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 = ORR - Rd: = Op1 OR Op2

1101 = MOV - Rd: = Op2

1110 = BIC - Rd: = Op1 AND NOT Op2

1111 = MVN - Rd: = NOT Op2

Figure 3.3c: SA-1100 instruction.[*-6]

3.2.2 Operands

Operands are the data that operations manipulate. An ISA defines the types and formats of
operands for a particular architecture. For example, in the case of the MPC823 (Motorola/
Freescale PowerPC), SA-1110 (Intel StrongARM), and many other architectures, the ISA
defines simple operand types of bytes (8 bits), halfwords (16 bits), and words (32 bits). More
complex data types such as integers, characters, or floating point are based on the simple types
shown in Figure 3.4.

byte

halfword

word

Figure 3.4: Simple operand types.

Embedded Processors 69

An ISA also defines the operand formats (the way the data looks) that a particular architecture
can support, such as binary, decimal, and hexadecimal. Figure 3.5 shows an example illustrat-
ing the way an architecture can support various operand formats.

MOV registerX, 10d ; Move decimal value 10 into register X
MOV registerX, $0Ah ; Move hexadecimal value A(decimal 10) to register X
MOV registerX, 00001010b ; Move binary value 00001010 (decimal 10) to register X

Figure 3.5: Operand formats pseudocode example.

3.2.3 Storage

The ISA specifies the features of the programmable storage used to store the data being oper-
ated on, primarily:

A. The organization of memory used to store operands. Memory is simply an array
of programmable storage, like that shown in Figure 3.6, that stores data, including
operations, operands, and so on.

The indices of this array are locations referred to as memory addresses, where each
location is a unit of memory that can be addressed separately. The actual physical or
virtual range of addresses available to a processor is referred to as the address space.

An ISA defines specific characteristics of the address space, such as whether it is:

e Linear. A linear address space is one in which specific memory locations are
represented incrementally, typically starting at O thru 2V!, where N is the address
width in bits.

o Segmented. A segmented address space is a portion of memory that is divided
into sections called segments. Specific memory locations can only be accessed by
specifying a segment identifier, a segment number that can be explicitly defined
or implicitly obtained from a register, and specifying the offset within a specific
segment within the segmented address space.

The offset within the segment contains a base address and a limit, which map to
another portion of memory that is set up as a linear address space. If the offset is
less than or equal to the limit, the offset is added to the base address, giving the
unsegmented address within the linear address space.

e Containing any special address regions.
e Limited in any way.

An important note regarding ISAs and memory is that different ISAs not only define
where data is stored but also ~ow data is stored in memory—specifically in what order

70 Chapter 3

Az A Ao

Address Decoder . Memory Cell

—1 . [.

—
Y Y Y ROM Matrix

N N D AW\

3-state output

C—E% Mt NN N NN N

Figure 3.6: Block diagram of memory array.[3‘7]

the bits (or bytes) that make up the data are stored, or byte ordering. The two byte-
ordering approaches are big-endian, in which the most significant byte or bit is stored
first, and little-endian, in which the least significant bit or byte is stored first.

For example:

e 68000 and SPARC are big-endian

e x86 is little-endian

e ARM, MIPS and PowerPC can be configured as either big-endian or little-endian
using a bit in their machine state registers

B. Register set. A register is simply fast programmable memory normally used to store
operands that are immediately or frequently used. A processor’s set of registers is
commonly referred to as the register set or the register file. Different processors have

www.newnespress.com

Embedded Processors 71

different register sets, and the number of registers in their sets varies between very few
to several hundred (even over a thousand). For example, the SA-1110 register set has
37 32-bit registers, whereas the MPC823, on the other hand, has about a few hundred
registers (general purpose, special purpose, floating-point, etc.).

C. How registers are used. An ISA defines which registers can be used for what

transactions, such as special purpose or floating point, and which can be used by the
programmer in a general fashion (general-purpose registers).

As a final note on registers, one of many ways processors can be referenced is
according to the size (in bits) of data that can be processed and the size (in bits) of
the memory space that can be addressed in a single instruction by that processor. This
specifically relates back to the basic building block of registers, the flip-flop; we’ll
discuss this concept in more detail in Section 3.3.

Commonly used embedded processors support 4-bit, 8-bit, 16-bit, 32-bit, and/or
64-bit processing, as shown in Table 3.2. Some processors can process larger amounts
of data and can access larger memory spaces in a single instruction, such as 128-bit
architectures, but they are not commonly used in embedded designs.

Table 3.2: “X”-bit architecture examples.

“X”-Bit Architecture
4 Intel 4004, ...
8 Mitsubishi M37273, 8051, 68HCO08, Intel 8008/8080/8086, ...
16 ST ST10, TI MSP430, Intel 8086/286, ...
32 68K, PowerPC, ARM, x86 (386+), MIPS32, ...

3.2.4 Addressing Modes

Addressing modes define the way the processor can access operand storage. In fact, the use of
registers is partly determined by the ISA’s Memory Addressing Modes. The two most common
types of addressing mode models are:

Load-store architecture, which only allows operations to process data in registers,
not anywhere else in memory. For example, the PowerPC architecture has only

one addressing mode for load and store instructions: register plus displacement
(supporting register indirect with immediate index, register indirect with index, etc.).

Register-memory architecture, which allows operations to be processed within both
registers and other types of memory. Intel’s 1960 Jx processor is an example of an
addressing mode architecture that is based on the register-memory model (supporting
absolute, register indirect, etc.).

72 Chapter 3

3.2.5 Interrupts and Exception Handling

Interrupts (also referred to as exceptions or traps, depending on the type) are mechanisms that
stop the standard flow of the program in order to execute another set of code in response to
some event, such as problems with the hardware, resets, and so forth. The ISA defines what if
any type of hardware support a processor has for interrupts.

Note: Because of their complexity, interrupts are discussed in more detail in Section 3.3
later in this chapter.

Architectures are based on several different ISA models, each with its own definitions for the
various features. The most commonly implemented ISA models are application-specific, gen-
eral-purpose, instruction-level parallel, or some hybrid combination of these three ISAs.

3.2.6 Application-Specific ISA Models

Application-specific ISA models define processors that are intended for specific embedded

applications, such as processors made only for TVs. There are several types of application-

specific ISA models implemented in embedded processors, the most common models being
the ones discussed in this section.

3.2.6.1 Controller Model

The Controller ISA is implemented in processors that are not required to perform complex
data manipulation, such as video and audio processors that are used as slave processors on a
TV board, for example (see Figure 3.7).

............... » | Video Processor [«

444444444444444 » | Audio Processor [«

Controller ISA 12C Bus
Architecture g M37273

NVM |«

S > Tuner [«

Figure 3.7: Analog TV board example with controller ISA implementations.

3.2.6.2 Datapath Model

The Datapath ISA is implemented in processors for which the purpose is to repeatedly per-
form fixed computations on different sets of data, a common example being digital signal
processors (DSPs), shown in Figure 3.8.

Embedded Processors

73

Microphone

STELG
Amplifier

Battery

PA Control

Battery/Temp
Monitor

Analog Baseband

Signal
Conditioning

RF Section Antenna
RF —
|| QPSK | |
Codec Modulator RF
Neg
Supply
ARM
Control =1 ENJIVALELE
Supervisor PMOS
Switches

in

R

Section

Voul

EN

Power Management

\

[} out

Section

\
RF

out

Section

=)\

=\
Integrated Power Supplies

Figure 3.8: Board example with datapath ISA implementation: digital cellphone.[3l

3.2.6.3 Finite State Machine with Datapath (FSMD) Model

The FSMD ISA is an implementation based on a combination of the Datapath ISA and the
Controller ISA for processors that are not required to perform complex data manipulation
and must repeatedly perform fixed computations on different sets of data. Common examples
of an FSMD implementation are application-specific integrated circuits (ASICs), shown in
Figure 3.9; programmable logic devices (PLDs), and field-programmable gate arrays
(FPGAs, which are essentially more complex PLDs).

K “DATA)
SDRAM | N V/ <:::> ZcX:gn/
\l/ ADDR l/\
QEI\I/ MPEG-4 <}:{> Sensor
ASIC
Controller <::|[>
ADDR
<~ <::|,> LCD
I I
e ll-[le] + 41
% gg 3 2 © o 0
) OO ™ > 0 Q O
= m % = s
E <3
%)

Figure 3.9: Board example with FSMD ISA implementation: solid-state digital camcorder.[3]

74 Chapter 3

3.2.6.4 Java Virtual Machine (JVM) Model

The JVM ISA is based on one of the Java Virtual Machine standards. Real-world JVMs can be
implemented in an embedded system via hardware, such as in alile’s aj-80 and aj-100 proces-
sors, for example (Figure 3.10).

GPIO Headersl SPI Header

| |

Touch
Screen «——» 1';|4 l\ﬁB
Controller PR -
Memory
- aJ-100
Connector Controller > .
SRAM
RJ-45 10Base-T
|, Ethernet <——
‘ Controller D |[EEE 1149 Interface

[]
Ty

2 x RS-232

Figure 3.10: JVM ISA implementation example.3:1%]

3.2.7 General-Purpose ISA Models

General-purpose ISA models are typically implemented in processors targeted to be used in

a wide variety of systems, rather than only in specific types of embedded systems. The most
common types of general-purpose ISA architectures implemented in embedded processors are
those discussed in this section.

3.2.7.1 Complex Instruction Set Computing (CISC) Model

The CISC ISA, as its name implies, defines complex operations made up of several instruc-
tions (see Figure 3.11). Common examples of architectures that implement a CISC ISA are
Intel’s X86 and Motorola/Freescale’s 68000 families of processors.

3.2.7.2 Reduced Instruction Set Computing (RISC) Model
In contrast to CISC, the RISC ISA (see Figure 3.12) usually defines:
e An architecture with simpler and/or fewer operations made up of fewer instructions

e An architecture that has a reduced number of cycles per available operation

Embedded Processors

Data Digital RGB
DDR > > TFT
(GSQEK/IRQMG - Address/Control AMD Geode™
or P SDCLKs GX 533@1.1W Analog RGB
128M X 16) [Processor > CRT
P PCI 3.3V
A A
\
L] Clock
14 MHz = System FS2 JTAG 33 MHz Eth
T__| Generator Control Header < > Cénterrcg]letatr
A
\/ Y
U(SzBXP‘Z);tS - >| AMD Geode™
CS5535 IDE/Flash Port | |pE Header
Line Out 2 Companion " | (44-pin, 2 mm)
; Device
Audio
Headphone Out Codec | > LPC
Microphone In <e—— T L BIOS
4
LPCBus §
GPIOs Serial Data - LPC Header
| Power Button }

Figure 3.11: CISC ISA implementation example.3'"]

© 2004 Advanced Micro Devices, Inc. Reprinted with permission.

Many RISC processors have only one-cycle operations, whereas CISCs typically have multi-
ple-cycle operations. ARM, PowerPC, SPARC, and MIPS are just a few examples of RISC-
based architectures.

A Final Note on CISC vs. RISC

In the area of general-purpose computing, note that many current processor designs

fall under the CISC or RISC category primarily because of their heritage. RISC proces-
sors have become more complex, while CISC processors have become more efficient to
compete with their RISC counterparts, thus blurring the lines between the definition of a
RISC versus a CISC architecture. Technically, these processors have both RISC and CISC
attributes, regardless of their definitions.

76 Chapter 3

|IEEE 1284,
Shared RAM,
Register-
10Base-T Thinnet 10/100Base-T Serial Mode
10Base-T | Thinnet 100Base-T RS232 16646
Xcvr Xcvr Xcvr Xcvr Xcvr
Ethernet &
NET+ARM Chip
System Bus 8/16/32
RAM Memory Application
Flash Memory 256K X 32 Specific
Hardware

Figure 3.12: RISC ISA implementation example.[3-2]

3.2.8 Instruction-Level Parallelism ISA Models

Instruction-level parallelism ISA architectures are similar to general-purpose ISAs,

except that they execute multiple instructions in parallel, as the name implies. In fact,
instruction-level parallelism ISAs are considered higher evolutions of the RISC ISA, which
typically has one-cycle operations, one of the main reasons that RISCs are the basis for
parallelism. Examples of instruction-level parallelism I[SAs include those discussed in this
section.

3.2.8.1 Single Instruction, Multiple Data (SIMD) Model

The SIMD Machine ISA (see Figure 3.13) is designed to process an instruction simultane-
ously on multiple data components that require action to be performed on them.

3.2.8.2 Superscalar Machine Model

The superscalar ISA (see Figure 3.14) is able to process multiple instructions simultaneously
within one clock cycle through the implementation of multiple functional components within
the processor.

Embedded Processors 77

OTI-4110 Controller Block Diagram

Flash/ Fax
ROM Modem
SDRAM
Scanner Scanner l Laser Engine
ccb/cl AFE 1 Controller
OTI-4110 Inkjet
Scanner | Motor/Lamp | _| Head/Motor [Heads
Motor/ Drivers Drivers |, Motors
Lamp I I
USB Memory
Device Card
Connector Slot

Figure 3.13: SIMD ISA implementation example.[313]

Instruction Memory (Flash/OTP/DRAM) .
Instruction Memory Interface -~
Interrupt Request
Module o
TriCare Superscalar CPU P .§
Instruction Control Unit @ — Timer Module =
' | 3 3
o - £ £
Integer Pipeline Load/Store Pipeline 9] Serial BT Module 15
T T = ISPI, UART’s IS
E 2
General-Purpose ~ General-Purpose 9] . @
Data Registers Address Registers '5. > Debug Evaluation ©
5 Module g
System Registers o =
— 2-channel DMA
Data Memory Interface -

Data Memory (SRAM, DRAM, EEPROM)

Figure 3.14: Superscalar ISA implementation example.[314]

3.2.8.3 Very Long Instruction Word Computing (VLIW) Model

The VLIW ISA (see Figure 3.15) defines an architecture in which a very long instruction word
is made up of multiple operations. These operations are then broken down and processed in
parallel by multiple execution units within the processor.

78 Chapter 3

Reference Board

SDRAM |

SPDF OUT

~—Boot EPROM

Aux Analog
Aux SPDF Codec A1
Codec R2
NTSCAw0]l 41 | | | jm=====- i -
ol i =ma)
™ Turer 1| Audio [T Codec R3
Uner 1 [NTSC Video M Mux H— ™ Audo L4
Decoder |] Codec R4
1 o TM-1100 ! N el
—>-—-VSB NIM 1| Colour Key |1 _!|YUvto R
Y to ROB T
£| I_,f T Mux [T T Matix [T]OAC !
AT NIV | S Gk By 4
NIM Control Module NTSCL | . RGBoOut
HD50 OENG (No Display)
Digital Record MPEG-2 |+——>| SDRAM
& Playback © | 1994 Decoder

!

JTAG]
— PCI Bridge [+—| EEPROM
On-Board PCI/XIO Bus t t PCl-to-PCI
to-
Available | PSIMCA Sot | |F|ash|<r| South Bridge |+—>| Super /0
PCI Slot IH/Power| Serial| Parallel | Keyboard | Mouse

RTC IDE

Figure 3.15: VLIW ISA implementation example: (VLIW) Trimedia-based
DTV board.[31%]

3.3 Internal Processor Design

The ISA defines what a processor can do, and it is the processor’s internal interconnected
hardware components that physically implement the ISA’s features. Interestingly, the
fundamental components that make up an embedded board are the same as those that
implement an ISA’s features in a processor: a CPU, memory, input components, output
components, and buses. As mentioned in Figure 3.16, these components are the basis of
the von Neumann model.

Of course, many current real-world processors are more complex in design than the

von Neumann model has defined. However, most of these processors’ hardware

designs are still based on von Neumann components or a version of the von Neumann
model called the Harvard architecture model. These two models differ in primarily one
area, and that is memory. A von Neumann architecture defines a single memory space to
store instructions and data. A Harvard architecture defines separate memory spaces for
instructions and data; separate data and instruction buses allow simultaneous fetches

Embedded Processors 79

Embedded System Board

Master Processor

CPU

Controls Usage and Manipulation of Data l I

Memory
¥ L)

1
1
1
1
1
1
1
1
1
Output Input !
1
1
1
1
1
1
1
1
1

A

5 System Components Commonly
Connected Via Bu_ses

Data From CPU or Inpﬁt Devices V :
Stored in Memory Until a CPU or Memory
Output Device Request

1

I
I A

Brings Data Into the Embedded System Input Output | Gets Data Out of the Embedded System

Figure 3.16: A von Neumann-based processor diagram.

and transfers to occur. The main reasoning behind using von Neumann versus a Harvard-
based model for an architecture design is performance. Given certain types of ISAs, like
Datapath model ISAs in DSPs, and their functions, such as continuously performing
fixed computations on different sets of data, the separate data and instruction memory
allows for an increase in the amount of data that can be processed per unit of time, given
the lack of competing interests of space and bus accesses for transmissions of data and
instructions.

As mentioned previously, most processors are based on some variation of the von

Neumann model (in fact, the Harvard model itself is a variation of the von Neumann model;
see Figure 3.17). Real-world examples of Harvard-based processor designs include ARM’s

ARMY9/ARM10, MPC860, 8031, and DSPs (see Figure 3.18a), whereas ARM’s ARM7 and
x86 are von Neumann-based designs (see Figure 3.18b).

Note: Although the MPC860 is a complex processor design, it is still based on the funda-
mental components of the Harvard model: the CPU, instruction memory, data memory,
I/O, and buses.

80

Chapter 3

| CPU |

I
Address Pathway

v

*
Data & Instruction

Pathway
v

| On-Chip Memory

CPU of the MPC860
is the PowerPC core

f

| CPU
) I ¥
Instruction g4r,ction Data Address Data
Address Path Path Path
Patklway at+Way athway Fathway

Data Memory

Input

1
1
1
1
1
1
1
1
1
1
1
1
:
' | Instruction Memory |
:
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 3.17: The von Neumann vs. Harvard architectures.

Data Memory

Buses
Instruction Memory i
g 4K System Interface Unit
1 Cache
M Controller
emor H
Core I MMU Ubus yBIU r
4K D
< | Cache System Functions
PowerPC™ (7)| D MMU Real Time clock
PCMCIA Interface
Parallel I/O Internal 4 General
.
Generators Space Timers 16 Serial
Parallel Interface 32-Bit RISC p¢ontroller _DMAs;
Port Internal 1.2nd Prograrh ROM 2 Virtual 1DMA
| Timers Peripheral Bus t

!
[SCCT| @ @ @ @ @ Communications

| Time Slot Assigner |

Serial Interface

Processor
Module

Figure 3.18a: Harvard architecture example: MPC860.

[3.16]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

Y

Output

....... > [Input/Output

Embedded Processors 81

SYSREF Clock Module x86 CPU Core Graphics Processor (GP)
DOTREF —»| [DOTCLKPLL | [16 KB Deache | Unit | | Load/Store
| TLB | | Bus Controller Unit | Alpha Compositing
GeodeLink™ ¢ J
~—
SDCLKs Memory B
Controller (GLMC) [<«—-| GeodeLink™ Interface Unit0 |
) (GLIUO) - *
64Bit o it DDR SDRAM
DDR 64-bit S 1; Display Controller (DC)
GeodeLink™ <«—»| GeodeLink™ Interface Unit 1
(oL
Processor (GLCP) Iy Iy
Intertace
— i M AT
v | Video Processor (VP)
-
AMD Geode GeodeLink™ ——
Device GLPCIg Controller | _
Interface () i Alpha Blender |
3x8-Bit DAC
AMD Geode™ PCI TFT CRT
CS5535 Companion Device (Flat Panel)

Figure 3.18b: A von Neumann architecture example: x86.1317]

Note: x86 is a complex processor design based on the von Neumann model in which,
unlike the MPC860 processor, instructions and data share the same memory space.

Why Talk About the von Neumann Model?

The von Neumann model not only impacts the internals of a processor (what you don’t
see) but it shapes what you do see and what you can access within a processor. As dis-
cussed in Chapter 2, ICs—and a processor is an IC—have protruding pins that connect
them to the board. Different processors vary widely in the number of pins and their asso-
ciated signals, but the components of the von Neumann model, both at the board and
at the internal processor level, also define the signals that all processors have. As shown
in Figure 3.19, to accommodate board memory, processors typically have address and
data signals to read and write data to and from memory. To communicate to memory or
I/O, a processor usually has some type of READ and WRITE pins to indicate it wants to
retrieve or transmit data.

82 Chapter 3

Voltage Source

Address Pins I Clock
AO — An
_ —— Read
Data Pins Processor
DO —Dn —— Write
Ground

Figure 3.19: Von Neumann and processor pins.

Of course there are other pins not explicitly defined by von Neumann that are required
for practical purposes, such as a synchronizing mechanism like a clock signal to drive
a processor and some method of powering and grounding of the processor. However,
regardless of the differences between processors, the von Neumann model essentially

drives the external pins all processors have.

3.3.1 Central Processing Unit (CPU)

The semantics of this section can be a little confusing because processors themselves are com-
monly referred to as CPUs, but it is actually the processing unit within a processor that is the
CPU. The CPU is responsible for executing the cycle of fetching, decoding, and executing
instructions (see Figure 3.20). This three-step process is commonly referred to as a three-stage
pipeline, and most recent CPUs are pipelined designs.

CPU designs can differ widely, but understanding the basic components of a CPU will make

it easier to understand processor design and the cycle shown in Figure 3.20. As defined by the
von Neumann model, this cycle is implemented through some combination of four major CPU
components:

e The arithmetic logic unit (ALU). Implements the ISA’s operations.

e Registers. A type of fast memory.

e The control unit (CU). Manages the entire fetching and execution cycle.
e The internal CPU buses. Interconnect the ALU, registers, and the CU.

Looking at a real-world processor, these four fundamental elements defined by the von
Neumann model can be seen within the CPU of the MPC860 (see Figure 3.21).

Embedded Processors 83

Instruction to be Executed to be Determined

Determine
Instruction
Results Stored in Result .)
Programmable Storage | Store Instruction | Instruction Obtained
Fetch from Programmable Storage
CPU
Execution Cycle
Results of Instruction Operating | g t) .

on Operands Determined | oo ¢ Instruction | Instruction Size and
Decode Purpose Determined

Operand
Fetch

Operand Located and Retrieved from Operand Storage

Figure 3.20: The fetch, decode, and execution cycle of CPU.

I-cache/I-MMU interface D-cache/D-MMU interface

Sequencer (1)

Control Unit
Address | Branch Instruction
generatio&@ unit@> g queue@
control bus 1 1

write back bus
(2 slots/clock)

ASpecial| GPR || GPR™WIMUL/| | ALU/ | | LDST || LDST
Regs | 32x32 || history | } IDIV BFU address| |fix data
source busses .. I }-- 14 i1 }

(4 slots/clock) Y I I

- Buses

Registers ALU

Figure 3.21: The MPC860 CPU: the PowerPC core.[3'8!

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

Remember: Not all processors have these components as strictly defined by the von
Neumann model, but they will have some combination of these components under vari-
ous aliases somewhere on the processor. Remember that this model is a reference tool
you can use to understand the major components of a CPU design.

84 Chapter 3

3.3.1.1 Internal CPU Buses

The CPU buses are the mechanisms that interconnect the CPU’s other components: the ALU,
the CU, and registers (see Figure 3.22). Buses are simply wires that interconnect the various
other components within the CPU. Each bus’s wire is typically divided into logical functions,
such as data (which carries data, bidirectionally, between registers and the ALU), address
(which carries the locations of the registers that contain the data to be transferred), control
(which carries control signal information, such as timing and control signals, between the
registers, the ALU, and the CU), and so on.

Note: To avoid redundancy, buses are discussed in more detail in Chapter 4.

I-cache/I-MMU interface D-cache/D-MMU interface

Core L-addr L-data

Sequencer (1)

Addrets_s | Branch Instruction
generation unit__ [| queue
® ® @

L ! Control Bus

control bus
write back bus
(2 slots/clock)

Special| GPR || GPR | [IMUL/| | ALU/ LDST || LDST
Regs | 32x32 || history | | IDIV BFU address| | fix data

source busses § [1 i1 t4 t
(4 slots/clock) u T '

Daté Buses

Figure 3.22: PowerPC core and buses.[31°]

Note: In the PowerPC Core, there is a control bus that carries the control signals
between the ALU, CU, and registers. What the PowerPC calls “source buses” are the
data buses that carry the data between registers and the ALU. There is an additional bus
called the write-back that is dedicated to writing data received from a source bus directly
back from the load/store unit to the fixed or floating-point registers.

Embedded Processors 85

3.3.1.2 Arithmetic Logic Unit (ALU)

The arithmetic logic unit (ALU) implements the comparison, mathematical, and logical opera-
tions defined by the ISA. The format and types of operations implemented in the CPU’s ALU
can vary depending on the ISA. Considered the core of any processor, the ALU is respon-
sible for accepting multiple n-bit binary operands and performing any logical (AND, OR,
NOT, etc.), mathematical (+, —, *, etc.), and comparison (=,<<, >, etc.) operations on these
operands.

The ALU is a combinational logic circuit that can have one or more inputs and only one out-
put. An ALU’s output is dependent only on inputs applied at that instant, as a function of time,
and “no” past conditions (see Chapter 2 on gates). The basic building block of most ALUs
(from the simplest to the multifunctional) is considered the full adder, a logic circuit that takes
three 1-bit numbers as inputs and produces two 1-bit numbers. The way this actually works
will be discussed in more detail later this section.

To understand how a full adder works, let us first examine the mechanics of adding binary
numbers (0’s and 1’s) together:

Cin... C|n
v v
Xn ... X1 Xo

Sh ... 5 So
+ + 4+

Cout ... Cout Cout

Starting with two 1-bit numbers, adding them will produce, at most, a 2-bit number:

X Y 5 = = 0b + 0b=0b
e - = 0b +1b = 0b
0 0 0 0
=1b+0b=1b
0 1 1 0
1 0 1 p = 1b + 1b = 10b (or 2d) In binary addition of 2 1-bit numbers, when
the count exceeds 10 (the binary of 2 decimal), the 1 (C,,,) is carried
1 1 0 1 and added to the next row of numbers thus resulting in a 2-bit number.

86 Chapter 3

This simple addition of two 1-bit numbers can be executed via a half-adder circuit, a logical
circuit that takes two 1-bit numbers as inputs and produces a 2-bit output. Half-adder circuits,
like all logical circuits, can be designed using several possible combinations of gates, such as
the combinations shown in Figure 3.23.

Half Adder using XOR and AND gates Half Adder using NOR and AND gates

Xo ﬁ Xo —
Y,] So So
COUI
Cout YO

Figure 3.23a: Half-adder logic circuits.[3-2°]

Figure 3.23b: Half-adder logic symbol.[3'2°]

To add a larger number, the adder circuit must increase in complexity, and this is where the
full adder comes into play. In trying to add two-digit numbers, for example, a full adder must
be used in conjunction with a half adder. The half adder takes care of adding the first digits
of the two numbers to be added (i.e., X, Yo, and so on); the full adder’s three 1-bit inputs are
the second digits of the two numbers to be added (i.e., Xy, yi,...) along with the carry in (C;;)
from the half adder’s addition of the first digits. The half adder’s output is the sum (S;) along
with the carry out (C,,,) of the first digit’s addition operation; the two 1-bit outputs of the full
adder are the sum (S,) along with the carry out (C,,,) of the second digits’ addition operation.
Figure 3.24a shows the logic equations and truth table, Figure 3.24b shows the logic symbol,
and Figure 3.24c shows an example of a full adder at the gate level, in this case, a combination
XOR and NAND gate.

Embedded Processors 87

Sum (S) = XYCi, + XY'Cy, + X'YCy, + X'Y' Gy
Carry Out (Co) = XY + X Gy, =Y Cy,

—|o|o|=|o|=|=|o|ln
—|2|2|ol=|o|o|ole

a|a|a|a|olo|lo|lo|x
alalo|o|=|—|o|o|<

Figure 3.24a: Full adder truth table and logic equations.[3'21]

o —
<

Figure 3.24b: Full adder logic symbol.[3-21]

\
X Ds

)
}

Figure 3.24c: Full adder gate-level circuit.[3>-2"]

To add larger numbers, additional full adders can then be integrated (cascaded) to the half-
adder/full-adder hybrid circuit (see Figure 3.25). The example shown in this figure is the basis
of the ripple-carry adder (one of many types of adders), in which » full adders are cascaded
so that the carry produced by the lower stages propagates (ripples) through to the higher stages
in order for the addition operation to complete successfully.

Multifunction ALUs that provide addition operations, along with other mathematical and logi-
cal operations, are designed around the adder circuitry, with additional circuitry incorporated

88 Chapter 3

Cin. i
v v
Xn ... X1 Xp

Sh ... $ S
o+ o+
Cout ... Cout Cout

v
A
~ N
X, Y, X5 Y, X4 Y, Xo Yo
X Y X Y X Y X Y
- Cout FA Cin_ Cout FA Cin_ Cout FA Cin | Cout HA
S S S S
Sn 82 S1 SO
Most Significant Bit Least Significant Bit

Figure 3.25: Cascaded adders.

for performing subtraction, logical AND, logical OR, and so on (see Figure 3.26a). The logic
diagram shown in Figure 3.26b is an example of two stages of an n-bit multifunction ALU.
The circuit in Figure 3.26 is based on the ripple-carry adder that was just described. In the logic
circuit in Figure 3.26b, control inputs k, k;, k,, and ¢;,, determine the function performed on
the operand or operands. Operand inputs are X = X1 ... X;Xgand Y = y,_; ... y1yo and the
output is sum (S) = s,.; ... s;8o where the ALU saves the generated results varies with different
architectures. With the PowerPC shown in Figure 3.27, results are saved in a register called an

Accumulator. Results can also be saved in memory (on a stack or elsewhere) or in some hybrid
combination of these locations.

Note: In the PowerPC core, the ALU is part of the “Fixed Point Unit” that implements
all fixed-point instructions other than load/store instructions. The ALU is responsible
for fixed-point logic, add, and subtract instruction implementation. In the case of the
PowerPC, generated results of the ALU are stored in an Accumulator. Also, note that the
PowerPC has an IMUL/IDIV unit (essentially another ALU) specifically for performing
multiplication and division operations.

Embedded Processors 89

Control Inputs Result Function
K, Ky Ko Cin
0 0 0 0 S=X Transfer X
0 0 0 1 S=X+1 Increment X
0 0 1 0 S=X+Y Addition
0 0 1 1 S=X+Y+1 Add with Carry In
0 1 0 0 S=X-Y-1 Subtract with Borrow
0 1 0 1 S=X-Y Subtraction
0 1 1 0 S=X-1 Decrement X
0 1 1 1 S=X Transfer X
1 0 0 S =XORY Logical OR
1 0 1 S = X XORY Logical XOR
1 1 0 S =XANDY Logical AND
1 1 1 S = NOT X Bit-wise Compliment

Figure 3.26a: Multifunction ALU truth table and logic equations.[3-2%]

X4 Vi Xo Yo ko ki ko

XTVV

Co X Y |c X Y_]c
Cout Cin ! Cout Cin 0
S S Cin

31 S0

Figure 3.26b: Multifunction ALU gate-level circuitry.[3‘22]

3.3.1.3 Registers

Registers are simply a combination of various flip-flops that can be used to temporarily store
data or to delay signals. A storage register is a form of fast programmable internal processor
memory usually used to temporarily store, copy, and modify operands that are immediately or

www.newnespress.com

90 Chapter 3

I-cache/I-MMU interface D-cache/D-MMU interface

Core L-addr| | [L-data

Sequencer (1)

Address Branch Instruction
— —

generation unit queue
@ ® @

1 ¥

control bus
write back bus
(2 slots/clock)

Special| GPR GPR | [IMUL/| | ALU/ LDST LDST
Regs || 32x32 || history | | IDIV BFU address| [fix data

source busses — § T f IRX} i1 i
(4 slots/clock) Y [[

Figure 3.27: PowerPC core and the ALU.3-2%]

frequently used by the system. Shift registers delay signals by passing the signals between the
various internal flip-flops with every clock pulse.

Registers are made up of a set of flip-flops that can be activated either individually or as a

set. In fact, it is the number of flip-flops in each register that is actually used to describe a
processor (for example, a 32-bit processor has working registers that are 32 bits wide contain-
ing 32 flip-flops, a 16-bit processor has working registers that are 16 bits wide containing 16
flip-flops, and so on). The number of flip-flops within these registers also determines the width
of the data buses used in the system. Figure 3.28 shows an example of how eight flip-flops
could comprise an 8-bit register and thus impact the size of the data bus. In short, registers are
made up of one flip-flop for every bit being manipulated or stored by the register.

ISA designs do not all use registers in the same way to process data, but storage typically

falls under one of two categories, either general purpose or special purpose (see Figure 3.29).
General-purpose registers can be used to store and manipulate any type of data determined by
the programmer, whereas special-purpose registers can only be used in a manner specified by
the ISA, including holding results for specific types of computations, having predetermined flags
(single bits within a register that can act and be controlled independently) acting as counters
(registers that can be programmed to change states—that is, increment—asynchronously or
synchronously after a specified length of time), and controlling /O ports (registers managing
the external I/O pins connected to the body of the processor and to board I/O). Shift registers are
inherently special purpose because of their limited functionality.

Embedded Processors 91

(MSB)

8-Bit Register

(LSB)

| bit7| bn6| bit5| bit5| bit4| bits| bit2| bit 1 | bno|

Data
Bus
Q, (LsB) Q Q, Q, Q, Qs Qs Q, (MSB)
5 PRES 5 PRES 5 PRE] b PRES 5 PRE] b PRE, 5 PRE, o PRE
CLK _I>ek ISk >k >k >k Dok _I>ek <
Q Q Q Q Q Q Q Q .
CLR CLR CLR CLR CLR CLR CLR CLR :
? O @) (@) O O O .
Clock E
Start E
Figure 3.28a: 8-bit register with 8 D flip-flops example.[3'24] :
Preset (PRE) :
Data (d) L .
Q .
Pulse
Clock Generator .
-vvvcccce
Q

Figure 3.28b: Example of a gate-level circuit of a flip-flop.[3-24]

Clear (CLR)

Note: The PowerPC Core has a “Register Unit” that contains all registers visible to a

user. PowerPC processors generally have two types of registers: general-purpose and spe-
cial-purpose (control) registers.

92 Chapter 3

I-cache/I-MMU interface D-cache/D-MMU interface

Sequencer @

Address Branch Instruction
generation | unit queue

@ ® @
' i

control bus
write back bus
(2 slots/clock)

Special || GPR GPR IMUL/ ALU/ LDST LDST
Regs || 32x32 || history IDIV BFU address | |fix data
source busses t 1i t bt b }
(4 slots/clock) i L L
Registers

Figure 3.29: PowerPC core and register usage.3->°]

The number of registers, the types of registers, and the size of the data that these registers
can store (8-bit, 16-bit, 32-bit, and so forth) vary depending on the CPU, according to the
ISA definitions. In the cycle of fetching and executing instructions, the CPU’s registers have
to be fast so as to quickly feed data to the ALU, for example, and to receive data from the
CPU’s internal data bus. Registers are also multiported so as to be able to both receive and
transmit data to these CPU components. The next several pages of this section will give some
real-world examples of how some common registers in architectures—specifically flags and
counters—can be designed.

3.3.1.4 Example 1: Flags

Flags are typically used to indicate to other circuitry that an event or a state change has
occurred. In some architectures, flags can be grouped together into specific flag registers,
whereas in other architectures, flags comprise some part of several different types of
registers.

To understand how a flag works, let’s examine a logic circuit that can be used in designing a
flag. Given a register, for instance, let’s assume that bit 0 is a flag (see Figures 3.30a and b)

and the flip-flop associated with this flag bit is a set-reset (SR) flip-flop, the simplest of data-
storage asynchronous sequential digital logic. The (cross NAND) SR flip-flop is used in this
example to asynchronously detect an event that has occurred in attached circuitry via the set

Embedded Processors 93

(MSB) N-Bit Register (LSB)
bitN | bit2 [bit1 | bit0
Figure 3.30a: N-bit register with flag and SR flip-flop example.[3'26]
Data
Bus
Qo (LSB) Qo QN (MSB)
Preset (PRE)
S Q PRE
S
s _
B CLR
R Q
Clock
CLR Start

Figure 3.30b: SR flip-flop gate-level circuit example.[3-26]

(S) or reset (R) input signal of the flip-flop. When the set/reset signal changes from O to 1 or 1
to 0, it immediately changes the state of the flip-flop, which results, depending on the input, in
the flip-flop setting or resetting.

3.3.1.5 Example 2: Counters

As mentioned at the beginning of this section, registers can also be designed to be counters,
programmed to increment or decrement either asynchronously or synchronously, such as
with a processor’s program counter (PC) or timers, which are essentially counters that count
clock cycles. An asynchronous counter is a register whose flip-flops are not driven by the
same central clock signal. Figure 3.31a shows an example of a 8-bit MOD-256 (modulus-256)
asynchronous counter using JK flip-flops (which have 128 binary states—capable of count-
ing between 0 and 255, 128 * 2 = 256). This counter is a binary counter, made up of 1’s and
0’s, with 8 digits, one flip-flop per digit. It loops counting between 00000000 and 11111111,
recycling back to 00000000 when 11111111 is reached, ready to start over with the count.
Increasing the size of the counter—the maximum number of digits the counter can count
to—is only a matter of adding a flip-flop for every additional digit.

94 Chapter 3
; SN D S [S D SN P S P S
PRE PRE PRE PRE PRE PRE PRE PRE
J q JQ Jq J q J q Jq JQ Jq
CLK
eLr® Kerr® Keorr? Kor® Kor® KerY Kor® Kor
oR 7 ? 7 7 7 7 7 T
dvideby2 | dvideby-d | divideby8 | dvide:by-16 | divide-by-32 | divide-by-64 | divideby-128| divide-by-256
“a 4 “a “a 4 “a Y a4
Qo (LsB) 01 Qz Qs Q4 Q5 QG Q7 (MSB)
Figure 3.31a: An 8-bit MOD-256 asynchronous counter example.[327]
PRE| CLR | CLK | J | K| Q| Q| Mode Q— T B L Q
0 1 X X | x| 1| 0|Preset |
1 0 X x| x| 0| 1] Clear
0 0 X X | x [1] 1 [Unused — P~
1] 1 | — |0]0]|Q]Q Hold PRE L] CLR
1 1 0| 1]0]| 0] Reset
1 1| - [1][ofo[o] set K Y
1 1 — | 1] 1[Qy| Q| Toggle |_ —|
1 1 [-01| 1] 1]Qq| Q| Hold
Figure 3.31b: JK flip-flop truth CLK
table.[3-27] Figure 3.31c: JK flip-flop gate-level diagram.[3'27]

All the flip-flops of the counter are fixed in toggle mode; looking at the counter’s truth table in
Figure 3.31b under toggle mode, the flip-flop inputs (J and K) are both = 1 (HIGH). In toggle
mode, the first flip-flop’s output (Q) switches to the opposite of its current state at each active
clock HIGH-to-LOW (falling) edge (see Figure 3.32).

Risin Fallin RO »
Edgeg Edgeg 1 Cycle
"'-1_.." r=—-—=-=1 r=—-—=-=1 r==-=-=1
P 'S ' ' ' ' ' '
1] 1 | 1 | 1 |
1 | 1 | 1 | 1 |
1] 1 | 1 | 1 |
: : Pulsan : : : :
____________ ulse' ____! [[
CLK Width
N K N K
| | | |
] | | |
] | | |
1 1 1 1
Qpomocmmmmen Lo L.
A A A A

Output switch Output switch Output switch Output switch
(Oto 1) (1to0) (Oto 1) (1t00)

Figure 3.32: First flip-flop CLK timing waveform for MOD-256 counter.

Embedded Processors 95

As shown in Figure 3.32, the result of toggle mode is that Qy, the output of the first flip-flop,
has half the frequency of the CLK signal that was input into its flip-flop. Q, becomes the CLK
signal for the next flip-flop in the counter. As shown in the timing diagram in Figure 3.33,

Q;, the output of the second flip-flop signal has half the frequency of the CLK signal that was
input into it (one-quarter of the original CLK signal).

Edge ~ Edge” __1Cycle Fememy Femmms 1
[S S
| : | ‘ | : | ‘ ! ' : ' ! '
| ' Dp— | ') ' ! ' ! ' ! '
CLKof _____» L ____'Pulset____} [coool! oo oo to---
15t Flip-Flop Width
‘ ' ‘ ' ' ' '
CLK of . oo bo--=-=----- Tommmmmmm e
2nd Flip-Flop (Qp)
Fss=s====s=s=========== = Fessssss=s========
Qq mcmme e ' L e '
A A A
Output switch Output switch Output switch
(0to 1) (10 0) (0to 1)

Figure 3.33: Second flip-flop CLK timing waveform for MOD-256 counter.

This cycle in which the output signals for the preceding flip-flops become the CLK signals
for the next flip-flops continues until the last flip-flop is reached. The division of the CLK
signal originally input into the first flip-flop can be seen in Figure 3.31a. The combination of
output switching of all the flip-flops on the falling edges of the outputs of the previous flip-
flop, which acts as their CLK signals, is how the counter is able to count from 00000000 to
11111111 (see Figure 3.34).

With synchronous counters, all flip-flops within the counter are driven by a common clock
input signal. Again using JK flip-flops, Figure 3.35 demonstrates how a MOD-256 synchro-
nous counter circuitry differs from a MOD-256 asynchronous counter (the previous example).

The five additional AND gates (two of which are not explicitly shown due to the scale of the
diagram) in the synchronous counter example in Figure 3.35 serve to put the flip-flops either in
HOLD mode if inputs J and K = 0 (LOW) or in TOGGLE mode if inputs J and K = 1 (HIGH).
Refer to the JK flip-flop truth table in Figure 3.30b. The synchronous counter in this example
works because the first flip-flop is always in TOGGLE mode at the start of the count 00000000,

CLK of
1st Flip-Flop

(LI

CLK of
2nd Flip-Flop

UL

CLK of
3rd Flip-Flop

L =
=
— =

CLK of
4th Flip-Flop

CLK of
5th Flip-Flop

CLK of
6th Flip-Flop

CLK of
7th Flip-Flop

CLK of
8th Flip-Flop

Counting Counting Counting Counting Counting Counting Counting Counting
00000000-00000111 00001000-00001111 00010000-00010111 00011000-00100000 00100001-00101000 00101001-00110000 00110001-01000000 01000001-01001000

Figure 3.34: All flip-flop CLK timing waveforms for MOD-256 counter.

+5 Volts (J) (J) J) (J) (J)
PRE PRE PRE PRE
J Q - J QH J Q J QF—
flip-flop 1 flip-flop3f | | K. ov.. flip-flop 8
—Q |—o —Q —Q —q
K Q K Q K Q K Q
CLR Q CLR Q CLR d CLR Q
O O O O
CLK
CLR
divide-by-2-. divide-by-4. divide-by-8.. divide-by- ... divide-by-256.
4 4 4 a4 "4
Q, (LSB) Q, Q, Q... QO (MSB)

Figure 3.35: An 8-bit MOD-256 synchronous counter example.[3-28]

Embedded Processors 97

whereas the rest are in HOLD mode. When counting (O to 1 for the first flip-flop), the next flip-
flop is then TOGGLED, leaving the remaining flip-flops on HOLD. This cycle continues (2—4
for the second flip-flop, 4-8 for the third flip-flop, 8-15 for the fourth flip-flop, 15-31 for the
fifth flip-flop, and so on) until all counting is completed to 11111111 (255). At that point, all
the flip-flops have been toggled and held accordingly.

3.3.1.6 Control Unit (CU)

The control unit (CU) is primarily responsible for generating timing signals as well as control-
ling and coordinating fetching, decoding, and executing instructions in the CPU. After the
instruction has been fetched from memory and decoded, the control unit then determines what
operation will be performed by the ALU and selects and writes signals appropriate to each
functional unit within or outside the CPU (i.e., memory, registers, ALU, etc.). To better under-
stand how a processor’s control unit functions, let’s examine more closely the control unit of a
PowerPC processor.

As shown in Figure 3.36, the PowerPC core’s CU is called a “sequencer unit” and is the heart
of the PowerPC core. The sequencer unit is responsible for managing the continuous cycle of

|-cache/I-MMU interface D-cache/D-MMU interface

Core L-addr L-data

Sequencer (1)

Control Address Branch Instruction
Unit =~ - generation@‘_ unit®] queue@
control bus Y ¥

write back bus
(2 slots/clock)

Special| GPR || GPR | [IMUL/| | ALU/ LDST || LDST
Regs | 32x32 || history | | IDIV BFU address| [fix data

source busses — } I f 11 T i
(4 slots/clock) 1 [[

Figure 3.36: PowerPC core and the CU.[32°]

fetching, decoding, and executing instructions while the PowerPC has power, including such
tasks as:

e Providing the central control of the data and instruction flow among the other major
units within the PowerPC core (CPU), such as registers, ALU, and buses

98 Chapter 3

e Implementing the basic instruction pipeline

e Fetching instructions from memory to issue these instructions to available execution
units

e Maintaining a state history for handling exceptions

Like many CUs, the PowerPC’s sequencer unit isn’t one physically separate, explicitly defined
unit; rather, it is made up of several circuits distributed within the CPU that all work together
to provide the managing capabilities. Within the sequencer unit these components are mainly
an address generation unit (provides address of next instruction to be processed), a branch
prediction unit (processes branch instructions), a sequencer (provides information and
centralized control of instruction flow to the other control subunits), and an instruction

queue (stores the next instructions to be processed and dispatches the next instructions in

the queue to the appropriate execution unit).

3.3.1.7 The CPU and the System (Master) Clock

A processor’s execution is ultimately synchronized by an external system or master clock,
located on the board. The master clock is an oscillator along with a few other components,
such as a crystal. It produces a fixed frequency sequence of regular on/off pulse signals
(square waves), as shown in Figure 3.37. The CU, along with several other components on an
embedded board, depends on this master clock to function. Components are driven by either
the actual level of the signal (a “0” or a “1”), the rising edge of a signal (the transition from
“0” to “17), and/or the falling edge of the signal (the transition from “1” to “0”). Different
master clocks, depending on the circuitry, can run at a variety of frequencies but typically
must run so that the slowest component on the board has its timing requirements met. In some
cases, the master clock signal is divided by the components on the board to create other clock
signals for their own use.

Risin Fallin
Edgeg Edgeg

Width

Time

Figure 3.37: Clock signal.

In the case of the CU, for instance, the signal produced by the master clock is usually divided
or multiplied within the CPU’s CU to generate at least one internal clock signal. The CU then

Embedded Processors 99

uses internal clock signals to control and coordinate the fetching, decoding, and executing of
instructions.

3.3.2 On-Chip Memory

The CPU goes to memory to get what it needs to process, because it is in memory that all the
data and instructions to be executed by the system are stored. Embedded platforms have a
memory hierarchy, a collection of different types of memory, each with unique speeds, sizes,
and usages (see Figure 3.38). Some of this memory can be physically integrated on the proc-
essor, such as registers, read-only memory (ROM), certain types of random access memory
(RAM), and level-1 cache.

Processor
_______ fmmmmmm——————
- . 1 Man 1 1 Secondary/Tertiary |
j------- 1 Level3! ! Memory | | Storage !
R i Level-2 | | Cache : ! - :
1 Level-1 | , Cache 1 vt o |
| Cache ! ! [! 1 o i
! 1 1 [: H ' :
_______ 1 : [] . 1 1 1 h
e e e L 1 o v _____ 1

Figure 3.38: Memory hierarchy.

3.3.2.1 Read-Only Memory (ROM)

On-chip ROM is memory integrated into a processor that contains data or instructions that
remain even when there is no power in the system, due to a small, longer-life battery, and
therefore is considered to be nonvolatile memory (NVM). The content of on-chip ROM usu-
ally can only be read by the system it is used in.

To get a clearer understanding of how ROM works, let’s examine a sample logic circuit of

8 X 8 ROM, shown in Figure 3.39. This ROM includes three address lines (log,8) for all
eight words, meaning that the 3-bit addresses ranging from 000 to 111 will each represent one
of the 8 bytes.

Note that different ROM designs can include a wide variety of addressing configurations
for the exact same matrix size, and this addressing scheme is just an example of one such
scheme.

100 Chapter 3

A, A A,

Address Decoder

—1 [

? Y Y ROM Matrix

, Memory Cell

O UL

3-state output

C—E% NN NN

Figure 3.39: 8 X 8 ROM logic circuit.[3-3]

Dy through D5 are the output lines from which data is read, one output line for each bit.
Adding rows to the ROM matrix increases its size in terms of the number of address spaces,
whereas adding columns increases a ROM’s data size (the number of bits per address) it can
store. ROM size specifications are represented in the real world identically to what is used
in this example, where the matrix reference (8 X 8, 16k X 32, and so on) reflects the actual
size of ROM where the first number, preceding the “X”, is the number of addresses and the
second number, after the “X”, reflects the size of the data (number of bits) at each address
location—8 = byte, 16 = halfword, 32 = word, and so on. Also, note that in some design
documentation, the ROM matrix size may be summarized. For example, 16 kB (kBytes) of
ROM is 16 K X 8 ROM, 32 MB of ROM is 32 M X 8 ROM, and so on.

Embedded Processors 101

In this example, the 8 X 8 ROM is an 8 X 8 matrix, meaning that it can store eight

different 8-bit bytes, or 64 bits of information. Every intersection of a row and column in
this matrix is a memory location, called a memory cell. Each memory cell can contain either
a bipolar or MOSFET transistor (depending on the type of ROM) and a fusible link

(see Figure 3.40).

MOSFET Storage Memory Cell

Bipolar Storage Memory Cell
(MROMS, PROMS, EPROMs, EEPROM s, Flash)

(MROMs, PROMSs)

' |
Programmable ., Voo Voo Programmable : Vee Vee
Link 1 _‘ 1 Link ; | ;
L | Stores Stores

Stores
wq”

Stores
P

wqn

“

Figure 3.40: 8 X 8 MOSFET and bipolar memory cells.3-3']

When a programmable link is in place, the transistor is biased ON, resulting in a 1 being
stored. All ROM memory cells are typically manufactured in this configuration. When
writing to ROM, a “0” is stored by breaking the programmable link. The way links are broken
depends on the type of ROM. The way to read from a ROM depends on the ROM, but in this
example, the chip enable (CE) line is toggled (HIGH to LOW) to allow the data stored to be
output via Dg—D; after having received the 3-bit address requesting the row of data bits

(see Figure 3.41).

Finally, the most common types of on-chip ROM include:

e MROM (mask ROM), which is ROM (with data content) that is permanently etched
into the microchip during the manufacturing of the processor and cannot be modified
later.

e PROMs (programmable ROM) or OTPs (one-time programmables), which is a type
of ROM that can be integrated on-chip and that is one-time programmable by a
PROM programmer (in other words, it can be programmed outside the manufacturing
factory).

e EPROM (erasable programmable ROM), which is ROM that can be integrated on a
processor, in which content can be erased and reprogrammed more than once. The
number of times erasure and reuse can occur depends on the processor. The content
of EPROM is written to the device using special separate devices and erased, either
selectively or in its entirety, using other devices that output intense ultraviolet light
into the processor’s built-in window.

102 Chapter 3

Gate [A2 [A1 [A0 [D7 [D6 [D5 [D4 [D3 [D2 [D1 | DO
1 0 0 0 1 1 1 1 0 1 1 1
2 0 0 1 1 1 0 1 1 1 0 1
3 0 1 0 0 1 1 1 1 0 1 1
4 0 1 1 0 0 1 0 1 1 1 1
5 1 0 0 1 1 1 1 1 1 1 1
6 1 0 1 1 1 1 [0 0 1
7 1 1 0 0 1 1 1 1 1 1 1
8 1 1 1 1 0 1 1 1 1 1 0
A A A
2 1 0 Broken Programmable
Link in Memory Cell
Address Decoder .
-
—1 1 1)
ROM Matrix
-
-
y 3

w~@ww$ww

3-state output

= >o M YW W N

D, Ds D; D, D, D, D, Do

Figure 3.41: 8 X 8 reading ROM circuit.[3-32]

e FEEPROM (electrically erasable programmable ROM), which, like EPROM, can be
erased and reprogrammed more than once. The number of times erasure and reuse
can occur depends on the processor. Unlike EPROMs, the content of EEPROM can
be written and erased without using any special devices while the embedded system
is functioning. With EEPROMs, erasing must be done in its entirety, unlike EPROMs,
which can be erased selectively.

Embedded Processors 103

A cheaper and faster variation of the EEPROM is Flash memory. Where EEPROMs are
written and erased at the byte level, Flash can be written and erased in blocks or sectors
(a group of bytes). Like EEPROM, Flash can be erased while still in the embedded device.

3.3.2.2 Random Access Memory (RAM)

RAM (random access memory), commonly referred to as main memory, is memory in which
any location within it can be accessed directly (randomly, rather than sequentially from some
starting point) and whose content can be changed more than once (the number depending

on the hardware). Unlike ROM, contents of RAM are erased if RAM loses power, meaning
that RAM is volatile. The two main types of RAM are static RAM (SRAM) and dynamic
RAM (DRAM).

As shown in Figure 3.42a, SRAM memory cells are made up of transistor-based flip-flop cir-
cuitry that typically holds its data due to a moving current being switched bidirectionally on a
pair of inverting gates in the circuit until power is cut off or the data is overwritten.

bit = bit
Figure 3.42a: A six-transistor SRAM cell.[3-33]

word

To get a clearer understanding of how SRAM works, let’s examine a sample logic circuit of
4K X 8 SRAM shown in Figure 3.42b.

In this example, the 4 K X 8 SRAM is a 4K X 8 matrix, meaning that it can store 4096

(4 X 1024) different 8-bit bytes, or 32768 bits of information. As shown in the diagram, 12
address lines (Ag—A ;) are needed to address all 4096 (000000000000b—111111111111b) pos-
sible addresses, one address line for every address digit of the address. In this example, the 4K
X 8 SRAM is set up as a 64 X 64 array of rows and columns where addresses Ay—Aj identify
the row and Ag—A |, identify the column. As with ROM, every intersection of a row and col-
umn in the SRAM matrix is a memory cell, and in the case of SRAM memory cells, they can
contain flip-flop circuitry mainly based on semiconductor devices such as polysilicon load
resistors, bipolar transistors, and/or CMOS transistors. There are eight output lines

(Dg—D5), a byte for every byte stored at an address.

104 Chapter 3

e 64 x 64 SRAM Array
A3—%:
A4—%:
A5—%:
D : i D
D° s Column I/O Circuits s D°
1 — 5 — T D1
Column Select
D2 —5— 5 02
Data Input Ds — 03 Data Output
Da —?— _?_ D4 ata Outpu
s —F— —E— 0
De —H5— As Az As Ag At At —— D
D, —f5— —f5— o
cs——eD_

Figure 3.42b: 4K X 8 SRAM logic circuit.[334]

In this SRAM example, when the chip select (CS) is HIGH, then memory is in standby mode
(no read or writes are occurring). When CS is toggled to LOW and write-enable input (WE) is
LOW, then a byte of data is written through the data input lines (Dg—D-) at the address
indicated by the address lines. Given the same CS value (LOW) and WE is HIGH, then a byte
of data is being read from the data output lines (Dy—D-) at the address indicated by the address
lines (Ag—A7).

As shown in Figure 3.43, DRAM memory cells are circuits with capacitors that hold a charge
in place (the charges or lack thereof reflecting data). DRAM capacitors need to be refreshed
frequently with power in order to maintain their respective charges and to recharge capacitors
after DRAM is read. (Reading DRAM discharges the capacitor.) The cycle of discharging and
recharging of memory cells is why this type of RAM is called dynamic.

Given a sample logic DRAM circuit of 16K X 8, this RAM configuration is a two-dimen-
sional array of 128 rows and 128 columns, meaning that it can store 16384 (16 X 1024)
different 8-bit bytes, or 131072 bits of information. With this address configuration, larger
DRAMs can either be designed with 14 address lines (Ay—A;3) needed to address all 16384

Embedded Processors

105

Data Out

A

»
>

v
Data In

Figure 3.43: DRAM (capacitor-based) memory cel

1.[3:35]

(000000000000b—11111111111111b) possible addresses—one address line for every address
digit of the address—or these address lines can be multiplexed, or combined into fewer lines

to share, with some type of data selection circuit managing the shared lines. Figure 3.44 dem-
onstrates how a multiplexing of address lines could occur in this example.

CAS

RAS

AA,
A/Ag
A/A
Ag/Aq
AJA,,
Ag/A,

Ag/A13

Column Address Register |

Data Input

A7 As Ag Ao A1 Az Az
EN
Column Address Decoder

128 x 128 DRAM Array

EN
V1 Ta
— A,

Row | _fa Row
Address 2 Address
Register | A, Decoder

— A,
| 7s
|6
DD
D, —
D, —
D; —
D, —
DS
Dg —
D.

<

1/0 Buffers & Sense Amplifiers

W/R

Figure 3.44: 16K X 8 SRAM logic circuit.[3-36]

Data Output

106 Chapter 3

The 16 K X 8 DRAM is set up with addresses Aj—Ag identifying the row and A,—A 5 identify-
ing the column. In this example, the ROW address strobe (RAS) line is toggled (from HIGH
to LOW) for Aj—Ag to be transmitted, and then the Column Address Strobe (CAS) line is tog-
gled (from HIGH to LOW) for A;—A to be transmitted. After this point the memory cell is
latched and ready to be written to or read from.

There are eight output lines (Dy—D-), a byte for every byte stored at an address. When the
write-enable (WE) input line is HIGH, data can be read from output lines Dy—D-, and when
WE is LOW, data can be written to input lines Dy—D-.

One of the major differences between SRAM and DRAM lies in the makeup of the DRAM
memory array itself. The capacitors in the memory array of DRAM are not able to hold a
charge (data). The charge gradually dissipates over time, thus requiring some additional
mechanism to refresh DRAM in order to maintain the integrity of the data. This mechanism
reads the data in DRAM before it is lost, via a sense amplification circuit that senses a charge
stored within the memory cell, and writes it back onto the DRAM circuitry. Ironically, the
process of reading the cell also discharges the capacitor, even though reading the cell is part of
the process of correcting the problem of the capacitor gradually discharging in the first place.
A memory controller (see Section 5.4, “Memory Management,” for more information) in the
embedded system typically manages a DRAM’s recharging and discharging cycle by initiating
refreshes and keeping track of the refresh sequence of events. It is this refresh cycling mecha-
nism that discharges and recharges memory cells that gives this type of RAM its name—
“dynamic” RAM (DRAM)—and the fact that the charge in SRAM stays put is the basis for its
name, “static” RAM (SRAM). It is this same additional recharge circuitry that makes DRAM
slower in comparison to SRAM. (Note that SRAM is usually slower than registers because

the transistors within the flip-flop are usually smaller and thus do not carry as much current as
those typically used within registers.)

SRAMs also usually consume less power than DRAMs, since no extra energy is needed for a
refresh. On the flip side, DRAM is typically cheaper than SRAM because of its capacitance-
based design, in comparison to its SRAM flip-flop counterpart (more than one transistor).
DRAM also can hold more data than SRAM, since DRAM circuitry is much smaller than
SRAM circuitry and more DRAM circuitry can be integrated into an IC.

DRAM is usually the “main” memory in larger quantities and is also used for video RAM
and cache. DRAMs used for display memory are also commonly referred to as frame buffers.
SRAM, because it is more expensive, is typically used in smaller quantities, but because it is
also the fastest type of RAM, it is used in external cache (see Section 5.2) and video memory
(when processing certain types of graphics, and given a more generous budget, a system can
implement a better-performing RAM).

Table 3.3 summarizes some examples of different types of integrated RAM and ROM used for
various purposes in ICs.

Embedded Processors 107

Table 3.3: On-chip memory,[3-37]

Main Memory Video Memory Cache

SRAM NA Random Access Memory SRAM has been used for
Digital-to-Analog Converter both level-1 and level-2 caches.
(RAMDAC) processors are A type of SRAM, called Burst/
used in video cards for SynchBurst Static Random-
display systems without Access Memory (BSRAM), which
true color, to convert digital is synchronized with either the
image data into analog system clock or a cache bus
display data for analog clock, has been primarily used
displays such as cathode ray for level-2 cache memory.
tubes (CRTs). The built-in (See Section 3.3.)
SRAM contains the color
palette table that provides
the red/green/blue (RGB)
on version values used by
the digital-to-analog
converters (DACs), also
built into the RAMDAC,
to change the digital image
data into analog signals for
the display units.

DRAM | Synchronous Dynamic On-Chip Rambus Dynamic Enhanced Dynamic Random

Random Access Memory
(SDRAM) is DRAM that
is synchronized with the
microprocessor’s clock
speed (in MHz). Several
types of SDRAMs are
used in various systems,
such as the JDEC SDRAM
(JEDEC Synchronous
Dynamic Random Access
Memory), PC100 SDRAM
(PC100 Synchronous
Dynamic Random Access
Memory), and DDR
SDRAM (Double Data
Rate Synchronous
Dynamic Random Access
Memory). Enhanced
Synchronous Dynamic
Random Access Memory
(ESDRAM) is SDRAM

Random Access Memory
(RDRAM) and On-Chip
Multibank Dynamic Random
Access Memory (MDRAM) are
DRAMs commonly used as
display memory that store
arrays of bit values (pixels of
the image on the display).
The resolution of the image is
determined by the number of
bits that have been defined
per each pixel.

Access Memory (EDRAM)
integrates SRAM within the
DRAM and is usually used as
level-2 cache (see Section 3.3).
The faster SRAM portion of
EDRAM is searched first for the
data, and if it’s not found there,
the DRAM portion of EDRAM is
searched.

108 Chapter 3

Table 3.3: Continued

Main Memory

Video Memory

Cache

that integrates SRAM
within the SDRAM,
allowing for faster SDRAM.
(Basically, the faster SRAM
portion of the ESDRAM is
checked first for data,

then if not found, the
remaining SDRAM

portion is searched.)

Direct Rambus Dynamic
Random Access Memory
(DRDRAM) and SyncLink
Dynamic Random Access
Memory (SLDRAM) are
DRAMs whose bus signals
can be integrated and
accessed on one line, thus
decreasing the access time
(since synchronizing
operations on multiple
lines is not necessary).

Fast Page Mode Dynamic
Random Access Memory
(FPM DRAM), Data Output
Random Access/Dynamic
Random Access Memory
(EDORAM/EDO DRAM),
and Data Burst Extended
Data Output Dynamic
Random-Access Memory
(BEDO DRAM) ...

3.3.2.3 Cache (Level-1 Cache)

Cache is the level of memory between the CPU and main memory in the memory hierarchy
(see Figure 3.45). Cache can be integrated into a processor or can be off-chip. Cache existing
on-chip is commonly referred to as level-1 cache, and SRAM memory is usually used as level-
1 cache. Because (SRAM) cache memory is typically more expensive due to its speed, proces-
sors usually have a small amount of cache, whether on-chip or off-chip.

Processor
[|
______ - 1 Main 1 I Secondary/Tertiary
_______ i Level-3 ! ! Memory ! | Storage !
_______ | Level-2 | , Cache ! ! ! !
1 i ' Cach I 1 ! 1 ! 1
1 Level-1 , ache | 1 1 1 ! 1
| Cache ! ! Lo ' i |] |
Lo I 1 | ' 1 ' : ' 1
. [Lo I T :

Figure 3.45: Level-1 cache in the memory hierarchy.

Embedded Processors 109

Using cache has become popular in response to systems that display a good locality of ref-

erence, meaning that these systems in a given time period access most of their data from a

limited section of memory. Cache is used to store subsets of main memory that are used or
accessed often. Some processors have one cache for both instructions and data; others have
separate on-chip caches for each.

A variety of strategies are used in writing to and reading data from level-1 cache and main
memory (Figure 3.46). These strategies include transferring data between memory and cache
in either one-word or multiword blocks. These blocks are made up of data from main memory
as well as the location of that data in main memory (called tags).

-------- von Neumann Processor -----4 r-=--------—- Harvard Processor ---------------=
| CPU | CPU |
I ¥ [. ¥ I ¥
Data & Instructi Instruction i
Address Pathway a aPaﬂ:]\?v;L;c ion Address Instruction Data Address Data

On -Chip Cache Memory

Output

! 1
' 1
1 1
1 1
1 1
1 1
1 1
! 1
! 1
! 1
! 1
: Pathway Fathway Pathway ~ Pathway!
1 1
1 1
! Instruction Cache Data Cache | !
! 1
! 1
1 1
! 1
1 1
1 1
! 1
! 1
! 1
! 1
1 1
1 1
1 1
1 1
1

Figure 3.46: Level-1 cache in the von Neumann and Harvard models.

In the case of writing to memory, given some memory address from the CPU, this address
is translated to determine its equivalent location in level-1 cache, since cache is a snapshot
of a subset of memory. Writes must be done in both cache and main memory to ensure that
cache and main memory are consistent (have the same value). The two most common write
strategies to guarantee consistency are write-through, in which data is written to both cache
and main memory every time, and write-back, in which data is initially only written into
cache, and only when it is to be bumped and replaced from cache is it written into main
memory.

When the CPU wants to read data from memory, level-1 cache is checked first. If the data is in
cache, it is called a cache hit. The data is returned to the CPU and the memory access process
is complete. If the data is not located in level-1 cache, it is called cache miss. Off-chip caches
(if any) are then checked for the data desired. If this is a miss, then main memory is accessed
to retrieve and return the data to the CPU.

110 Chapter 3

Data is usually stored in cache in one of three schemes:

e Direct mapped, where data in cache is located by its associated block address in
memory (using the “tag” portion of the block)

e Set associative, where cache is divided into sets into which multiple blocks can be
placed; blocks are located according to an index field that maps into a cache’s particu-
lar set

e Full associative, where blocks are placed anywhere in cache and must be located by
searching the entire cache every time

In systems with memory management units (MMU) to perform the translation of addresses
(see Section 3.3), cache can be integrated between the CPU and the MMU or between the
MMU and main memory. There are advantages and disadvantages to both methods of cache
integration with an MMU, mostly surrounding the handling of DMA (direct memory access),
which is the direct access of off-chip main memory by slave processors on the board without
going through the main processor. When cache is integrated between the CPU and MMU, only
the CPU accesses to memory affect cache; therefore DMA writes to memory can make cache
inconsistent with main memory unless CPU access to memory is restricted while DMA data is
being transferred or cache is being kept updated by other units within the system besides the
CPU. When cache is integrated between the MMU and main memory, more address transla-
tions need to be done, since cache is affected by both the CPU and DMA devices.

3.3.2.4 On-Chip Memory Management

Many different types of memory can be integrated into a system, and there are also differences
in the way software running on the CPU views memory addresses (logical/virtual addresses)
and the actual physical memory addresses (the two-dimensional array or row and column).
Memory managers are ICs designed to manage these issues and in some cases are integrated
onto the master processor.

The two most common types of memory managers that are integrated into the master
processor are memory controllers (MEMC) and memory management units (MMUs).

A memory controller (MEMC) is used to implement and provide glueless interfaces to the
different types of memory in the system, such as cache, SRAM, and DRAM, synchronizing
access to memory and verifying the integrity of the data being transferred. Memory
controllers access memory directly with the memory’s own physical (two-dimensional)
addresses.The controller manages the request from the master processor and accesses the
appropriate banks, awaiting feedback and returning that feedback to the master processor.
In some cases, where the memory controller is mainly managing one type of memory, it
may be referred to by that memory’s name (such as DRAM controller, cache controller,
and so forth).

Embedded Processors 111

Memory management units (MM Us) are used to translate logical addresses into physical
addresses (memory mapping) as well as handle memory security, control cache, handle bus
arbitration between the CPU and memory, and generate appropriate exceptions. Figure 3.47
shows the MPC860, which has both an integrated MMU (in the core) and an integrated mem-
ory controller (in the system interface unit).

4K System Interface Unit
1 Cache
Core | | IMMU Usbus Memory Controller |—
4KD BIU -
<, | Cache System Functions
PowerPC™ @ D MMU Real Time clock
PCMCIA Interface
Parallel I/0 Internal 4 General
Interrupt
Baud Rate Memory Purpose
Generators Space’ | Controller | fimers 1gla>erlal
Paralle| Interface | 32-Bit RISC pController
PO” Internal |_and Program ROM [\jA 2 Virtual 1DMA
Timers Peripheral Bus

!_L\scm !_t_\sccz !_L\sccs !_t_\scm !_L\smm !_L\SMC y‘t_\spn B camuniesiane

Processor
| Time Slot Assigner | Serial Interface Module

Figure 3.47: Memory management and the MPC860.[3-38]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

In the case of translated addresses, the MMU can use level-1 cache on the processor, or por-
tions of cache allocated as buffers for caching address translations, commonly referred to as
the translation lookaside buffer, or TLB, to store the mappings of logical addresses to physi-
cal addresses. MMUSs also must support the various schemes in translating addresses, mainly
segmentation, paging, or some combination of both schemes. In general, segmentation is the
division of logical memory into large variable-size sections, whereas paging is the dividing of
logical memory into smaller fixed-size units.

The memory protection schemes then provide shared, read/write, or read-only accessibility to
the various pages and/or segments. If a memory access is not defined or allowed, an interrupt
is typically triggered. An interrupt is also triggered if a page or segment isn’t accessible dur-
ing address translation (i.e., in the case of a paging scheme, a page fault, etc.). At that point
the interrupt would need to be handled; the page or segment would need to be retrieved from
secondary memory, for example.

The scheme supporting segmentation and/or paging of the MMU typically depends on the
software—that is, the operating system.

112 Chapter 3

3.3.2.5 Memory Organization

Memory organization includes not only the makeup of the memory hierarchy of the particu-
lar platform but also the internal organization of memory, specifically what different portions
of memory may or may not be used for as well as how all the different types of memory are
organized and accessed by the rest of the system. For example, some architectures may split
memory so that a portion stores only instructions and another only stores data. The SHARC
DSP contains integrated memory that is divided into separate memory spaces (sections of
memory) for data and programs (instructions). In the case of the ARM architectures, some are
based on the von Neumann model (for example, ARM?7), which means that it has one memory
space for instructions and data, whereas other ARM architectures (namely ARM9) are based
on the Harvard model, meaning memory is divided into a section for data and a separate
section for instructions.

The master processor, along with the software, treats memory as one large one-dimensional
array, called a memory map (see Figure 3.48). This map serves to clearly define what address
or set of addresses are occupied by what components.

FFFF FFFF

0000 0000

Figure 3.48a: Memory map.

FFFF FFFF Address | Register Size
Offset
000 SIU module configuration register (SIUMCR) 32 bits
004 System Protection Control Register (SYPCR) 32 bits
--------------> 008-00D Reserved 6 bytes
00E Software Service Register (SWSR) 16 bits
010 SIU Interrupt Pending Register (SIPEND) 32 bits
014 SIU Interrupt Mask Register (SIMASK) 32 bits
018 SIU Interrupt Edge/Level Register (SIEL) 32 bits
01C SIU Interrupt Vector Register (SIVEC) 32 bits
020 Transfer Error Status Register (TESR) 32 bits
0000 0000

Figure 3.48b: MPC860 registers within a memory map.[3-3%]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

Embedded Processors 113

Within this memory map, an architecture may define multiple address spaces accessible

to only certain types of information. For example, some processors may require at a specific
location—or given a random location—a set of offsets to be reserved as space for its own
internal registers (see Figure 3.48b). The processor may also allow specific address spaces
accessible to only internal I/O functionality, instructions (programs), and/or data.

3.3.3 Processor Input/Output (1/0)

Input/output components of a processor are responsible for moving information to and from
the processor’s other components to any memory and I/O outside the processor, on the board
(see Figure 3.49). Processor I/0 can be input components that only bring information into the
master processor, output components that bring information out of the master processor, or
components that do both (refer back to Figure 3.48).

Embedded System Board

Master Processor

CPU
Controls Usage and Manipulation of Data 1 I

Memory

1

|)

i Output Input
i

1

1

5 System Components Commonly Connected Via Buses

Data From CPU or Input Devices V
Stored in Memory Memory
Until a CPU or Output Device Request

1
1
1
1
1
1
L) i
1
1
1
1
1
1
1

|
1
1 4 1

E:Lnt?esdg:ctiaslyr/‘;ct)etrge Input Output | Gets Data Out if the Embedd-ed System
1

| |
Figure 3.49: Processor I/O diagram.

Virtually any electromechanical system, embedded and nonembedded, conventional (key-
board, mouse, etc.) as well as unconventional (power plants, human limbs, etc.), can be con-
nected to an embedded board and act as an I/O device. I/O is a high-level group that can be
subdivided into smaller groups of either output devices, input devices, or devices that are both
input and output devices. Output devices can receive data from board I/O components and

114 Chapter 3

display that data in some manner, such as printing it to paper, to a disk, or to a screen or a
blinking LED light for a person to see. An input device transmits data to board I/O compo-
nents, such as a mouse, keyboard, or remote control. I/O devices can do both, such as a net-
working device that can transmit data to and from the Internet, for instance. An I/O device
can be connected to an embedded board via a wired or wireless data transmission medium,
such as a keyboard or remote control, or can be located on the embedded board itself, such
as an LED.

Because 1/0 devices can be such a wide variety of electromechanical systems, ranging
from simple circuits to another embedded system entirely, processor I/O components
can be organized into categories based on the functions they support, the most common
including:

e Networking and communications I/O (the physical layer of the OSI model)
e Input (keyboard, mouse, remote control, voice, etc.)
e Graphics and output I/O (touch screen, CRT, printers, LEDs, etc.)

e Storage I/O (optical disk controllers, magnetic disk controllers, magnetic tape control-
lers, etc.)

e Debugging I/0 (BDM, JTAG, serial port, parallel port, etc.)

e Real-time and miscellaneous I/O (timers/counters, analog-to-digital converters and
digital-to-analog converters, key switches, and so on)

In short, an I/O subsystem can be as simple as a basic electronic circuit that connects the mas-
ter processor directly to an I/O device (such as a master processor’s 1/O port to a clock or LED
located on the board) to more complex I/O subsystem circuitry that includes several units, as
shown in Figure 3.50. I/O hardware is typically made up of all or some combination of six
main logical units:

e The transmission medium, wireless or wired medium connecting the 1/0 device to the
embedded board for data communication and exchanges.

e A communication port, which is what the transmission medium connects to on the
board, or if a wireless system, what receives the wireless signal.

e A communication interface, which manages data communication between master
CPU and I/O device or I/O controller; also responsible for encoding data and
decoding data to and from the logical level of an IC and the logical level of the I/O
port. This interface can be integrated into the master processor, or can be a
separate IC.

e An /O controller, a slave processor that manages the 1/0 device.

Embedded Processors 115

i Other Controllers :
HD L ____ !

P . Master

! HD Controller «—»{ Processor DE—

Printer

Figure 3.50: Ports and device controllers on an embedded board.

e J/O buses, the connection between the board I/O and master processor.

e The master processor integrated 1/0.

Monitor

This means that the I/O on the board can range from a complex combination of components,
as shown in Figure 3.51a, to a few integrated I/O board components, as shown in

Figure 3.51b.
o 1/O Devices
Communication
Port
T Embedded Board & . i — CRT
I Y Transmission
| _, Memory | i Video Parallel Medium
| Integrated Master CPU (Frame Buffer) Controller T ®F Port | |
! Parallel Interface : i Lo | LcD
i Iy : :
. I/0O Bus

The Master Processor
Integrated 1/0 and
Communication Interface

Figure 3.51a: Complex I/O subsystem.

116 Chapter 3

1/0O Port (Pin)

—>!
Master CPU
A
(]
o :
. +V
the master processor
integrated 1/0 I/0 Device

(LED)
Embedded Board

Figure 3.51b: Simple I/O subsystem.[3-4°]

I/O controllers are a type of processor (see Section 3.2, “ISA Architecture Models”). An I/O
device can be connected directly to the master processor via I/O ports (processor pins) if the
I/0 devices are located on the board, or it can be connected indirectly via a communication
interface integrated into the master processor or a separate IC on the board.

As shown in the sample circuit in Figure 3.52, an I/O pin is typically connected to some type
of current source and switching device. In this example it’s a MOSFET transistor. This sample
circuit allows for the pin to be used for both input and output. When the transistor is turned
OFF (open switch), the pin acts as an input pin, and when the switch is ON it operates as an
output port.

1/0 Pin

VAW

1L
INPUT OUTPUT
Figure 3.52: 1/O port sample circuit.[3-41]

A pin or sets of pins on the processor can be programmed to support particular I/O functions
(for example, Ethernet port receiver, serial port transmitter, bus signals, etc.), through a master
processor’s control registers (see Figure 3.53).

Embedded Processors 117

Optional Gl 8,16 32-bit
CAM ue s , or -DI
Eth — MPC860 Boot ROM
thernet EEST
. RJ-45 MC68160
L . Power
AUI :%ﬂ]:li SCC1 I b
RS-422 Core DRAM SIMM
§ D-15 |:|‘—’|:|‘—> scce 16 or 32-bits
ocaltalk _ Memory
T1/ET 82-bit || "o
_ Transceiver RISC
T1/E1 Line TDM-A SCC3
Time Qspan-860
ISDN-Basic or Primary Slot Scca P
S/T/U S/T/U TDM-B Assigner SMCH1 t PCI
Transcvr IDMA 1 |«—— Peripheral 1

«—— Peripheral 2

Local RS-232 IDMA 2

Al] sMmc2 -~ . PortA

Terminal PCMCIA Buffers Port B
Serial EEPROM| MCM2814 [FC_J~——] Peripheral

Figure 3.53: MPC860 reference platform and 1/0.[3-42]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

Note: In the case of the MPC860, the |/O such as Ethernet and RS-232 is implemented
by the SCC registers, RS-232 by SMC2, and so on.

Within the various I/O categories (networking, debugging, storage, and so forth), processor
I/O is typically subgrouped according to the way data is managed. Note that the actual sub-
groups may be entirely different, depending on the architecture viewpoint, as related to the
embedded systems model. Here “viewpoint” means that hardware and software can view
(and hence subgroup) I/O differently. Within software, the subgroups can even differ depend-
ing on the level of software (i.e., system software versus application software, operating
system versus device drivers, and so on). For example, in many operating systems, 1/O is con-
sidered to be either block or character I/0O. Block I/O stores and transmits data in fixed block
sizes and is addressable only in blocks. Character 1/0O, on the other hand, manages data in
streams of characters, the size of the character depending on the architecture—such as

one byte, for example.

From a hardware viewpoint, I/O manages (transmits and/or stores) data in serial, in parallel,
or both.

118 Chapter 3

3.3.3.1 Managing I/O Data: Serial vs. Parallel I/O

Processor I/0 that can transmit and receive serial data is made up of components in which data
is stored, transferred, and/or received one bit at a time. Serial 1/0 hardware is typically made
up of some combination of the six main logical units outlined at the start of the chapter; serial
communication then includes within its I/O subsystem a serial port and a serial interface.

Serial interfaces manage the serial data transmission and reception between the master CPU
and either the 1/O device or its controller. They include reception and transmission buffers to
store and encode or decide the data they are responsible for transmitting to either the master
CPU or an I/O device. In terms of serial data transmission and reception schemes, they gener-
ally differ as to the direction in which data can be transmitted and received, as well as in the
actual process of how the data bits are transmitted (and thus received) within the data stream.

Data can be transmitted between two devices in one of three directions: one way, in both direc-
tions but at separate times because they share the same transmission line, and in both direc-
tions simultaneously. A simplex scheme for serial I/O data communication is one in which a
data stream can only be transmitted—and thus received—in one direction (see Figure 3.54a).
A half-duplex scheme is one in which a data stream can be transmitted and received in either
direction, but in only one direction at any one time (see Figure 3.54b). A full-duplex scheme is

Embedded Board Printer
' Serial Interface ' Serial Interface
| Transfer Data Receive Data
TxData) | > z :
{ () Serial Port Serial Port (RxData) i
- Ground (Gnd) —— —— Ground (Gnd) :
Figure 3.54a: Simplex transmission scheme example.[3'43]

Embedded Board ‘ ‘ Modem
: Serial Interface :

‘Serial Interface |

| Transfer Data | | — ?Transfer Data
(TxData) : i (TxData)
s RTS : Serial Serial . RTS f
: Port Port :
© Receive Data : | Receive Data |
: (RxData) I~ : (RxData) :
. Ground (Gnd) ——— ——— Ground (Gnd) |

Figure 3.54b: Half-duplex transmission scheme example.[3'43]

Embedded Processors 119

one in which a data stream can be transmitted and received in either direction, simultaneously
(see Figure 3.54c¢).

Embedded Board ‘ ‘ VoIP Phone

 Serial Interface :

! Transfer Data > —< I— Transfer Data |
(TxData) i (TxData)
Receive Data Serial Serial : R D .
; <] Port Port [> . Receive Data

(RxData) (Rx ata)

Senal Interface

Ground (Gnd)

Figure 3.54c: Full-duplex transmission scheme example.[3'43]

Ground (Gnd)

Within the actual data stream, serial I/O transfers can occur either as a steady (continuous)
stream at regular intervals regulated by the CPU’s clock, referred to as a synchronous transfer,
or intermittently at irregular (random) intervals, referred to as an asynchronous transfer.

In an asynchronous transfer (shown in Figure 3.55), the data being transmitted can be stored
and modified within a serial interface’s transmission buffer or registers. The serial interface

at the transmitter divides the data stream into packets that typically range from either 4-8 or
5-9 bits, the number of bits per character. Each of these packets is then encapsulated in frames
to be transmitted separately. The frames are packets that are modified before transmission by
the serial interface to include a START bit at the start of the stream, and a STOP bit or bits
(i.e., can be 1, 1.5, or 2 bits in length to ensure a transition from “1” to “0” for the START bit
of the next frame) at the end of the data stream being transmitted. Within the frame, after the

STOP START
bit(s) gdatabits bit

Embedded System [EIE Idle Embedded System

Transmitter 0 011 1|_0|1 1 Receiver

LSB

Sampling:in middle
of data bit period

Figure 3.55: Asynchronous transfer sample diagram.

120 Chapter 3

data bits and before the STOP bit, a parity bit may also be appended. A START bit indicates
the start of a frame, the STOP bit(s) indicates the end of a frame, and the parity is an optional
bit used for very basic error checking. Basically, parity for a serial transmission can be NONE
(for no parity bit and thus no error checking), EVEN (where the total number of bits set to “1”
in the transmitted stream, excluding the START and STOP bits, needs to be an even number
for the transmission to be a success), or ODD (where the total number of bits set to “1” in the
transmitted stream, excluding the START and STOP bits, needs to be an odd number for the
transmission to be a success).

Between the transmission of frames, the communication channel is kept in an idle state, mean-
ing a logical level “1” or non-return to zero (NRZ) state is maintained.

The serial interface of the receiver then receives frames by synchronizing to the START bit of
a frame, delays for a brief period, and then shifts in bits, one at a time, into its receive buffer
until reaching the STOP bit (s). For asynchronous transmission to work, the bit rate (band-
width) has to be synchronized in all serial interfaces involved in the communication.

Bit rate is defined as:

(number of actual data bits per frame / total number of bits per frame) * baud rate

The baud rate is the total number of bits, regardless of type, per unit of time (kbits/sec,
Mbits/sec, etc.) that can be transmitted.

Both the transmitter’s serial interface and the receiver’s serial interface synchronize with sepa-
rate bit-rate clocks to sample data bits appropriately. At the transmitter, the clock starts when
transmission of a new frame starts, and it continues until the end of the frame so that the data
stream is sent at intervals the receiver can process. At the receiving end, the clock starts with
the reception of a new frame, delaying when appropriate, in accordance with the bit rate, sam-
pling the middle of each data bit period of time, and then stopping when the frame’s STOP
bit(s) are received.

In a synchronous transmission (as shown in Figure 3.56), there are no START or STOP bits
appended to the data stream, and there is no idle period. As with asynchronous transmissions,

Next Frame Previous Frame| Embedded System
Embedded System === 1o o[1 1|_o|1 1|i|.. Receiver

Transmitter

MSB LSB

Serial Frame

Figure 3.56: Synchronous transfer sample diagram.

Embedded Processors 121

the data rates on receiving and transmitting have to be in sync. However, unlike the separate
clocks used in an asynchronous transfer, the devices involved in a synchronous transmission
are synchronizing off one common clock that does not start and stop with each new frame
(and on some boards there may be an entirely separate clock line for the serial interface to
coordinate the transfer of bits). In some synchronous serial interfaces, if there is no separate
clock line, the clock signal may even be transmitted along with the data bits.

The universal asynchronous receiver-transmitter (UART) is an example of a serial interface
that does asynchronous serial transmission, whereas serial peripheral interface (SPI) is an
example of a synchronous serial interface.

Note: Different architectures that integrate a UART or other types of serial interfaces can
have varying names for the same type of interface, such as the MPC860, which has serial
management controller (SMC) UARTs, for example. Review the relevant documentation
to understand the specifics.

Serial interfaces can either be separate slave ICs on the board or integrated onto the master
processor. The serial interface transmits data to and from an I/O device via a serial port (see
Chapter 4). Serial ports are serial communication (COM) interfaces that are typically used to
interconnect off-board serial I/O devices to on-board serial board I/O. The serial interface is
then responsible for converting data that is coming to and from the serial port at the logic level
of the serial port into data that the logic circuitry of the master CPU can process.

3.3.3.2 Processor Serial 1/0O Example 1:

An Integrated Universal Asynchronous Receiver-Transmitter

The UART is an example of a full-duplex serial interface that can be integrated into the master
processor and that does asynchronous serial transmission. As mentioned earlier, the UART
can exist in many variations and under many names; however, they are all based on the same
design: the original 8251 UART controller implemented in older PCs. A UART (or something
like it) must exist on both sides of the communication channel, in the I/O device as well as on
the embedded board, in order for this communication scheme to work.

In this example, we look at the MPC860 internal UART scheme, since it has more than one
way to implement a UART. The MPC860 allows for two methods to configure a UART,
either using a serial communication controller (SCC) or a serial management controller
(SMC). Both of these controllers reside in the PowerPC’s Communication Processor
Module (shown in Figure 3.57) and can be configured to support a variety of communication
schemes, such as Ethernet, HDLC, and the like for the SCC and transparent, GCI, and so on

122 Chapter 3
4K System Interface Unit
1 Cache @
Core I MMU U-bus Memory Controller
4K D BIY
< | Cache System Functions
PowerPC™ @ D MMU Real Time clock
PCMCIA Interface
Parallel /0O Internal 4 General
Baud Rate Memory ér;t:trr?lg r Purpose -
Generators Space Timers 16 Serial
Parallel Interface | 32-Bit RISC pController | DMAs;
Port Internal_Land Program ROM [mA] 2 Virtual 1IDMA
Timers Peripheral Bus ¢ @
FCTr-————° 7Y ___'1"" """""" B A
=P [SCCH][SCC2] [SCC3] [SCC4] [SMCT] [SMC2] [SPIT]| I°C |communications
Lt — e . - Processor
|_ Time Slot Assigner | Serial Interface Module

Figure 3.57: MPC860 UARTSs.[3>44]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

for SMC:s. In this example, however, we are only examining both being configured and func-
tioning as a UART.

MPC860 SCC in UART Mode

As introduced at the start of this section, in an asynchronous transfer, the data being transmit-
ted can be stored and modified within a serial interface’s transmission buffer. With the SCCs
on the MPC860, there are two UART first-in/first-out (FIFO) bufters, one for receiving data
for the processor and one for transmitting data to external I/O (see Figures 3.58a and b). Both
buffers are typically allocated space in main memory.

Baud Rate
Generator(s) CLKx

U-Bus

e

Peripheral Bus

! MUX
Control Registers |

Clock Generator

T l Internal Clocks
Receive Transmit Control
Data Data Unit SYNC
Register Register

v
RxD ™D

Figure 3.58a: SCC in receive mode.[345]

Embedded Processors 123

U-Bus
DPLL |.CHKX
and Clock |,
Recovery RCLKx
SDMA Control Registers l
Clock Generator
Peripheral Bus l l
Internal Clocks
CDx* Receive Receive| [Transmit Transmit > RTS*
Control Data Data Control .
Unit FIFO FIFO Unit [© CTS
RxD TxD

—>| Decoder H Delimiter |—| Shifter|—| ShifterH Delimiter |—| Encoder|—>

Figure 3.58b: SCC in transmit mode.[34]

As shown in Figures 3.58a and b, along with the reception and transmission buffers there are
control registers to define the baud rate, the number of bits per character, the parity, and the
length of the stop bit, among other things. As shown in Figures 3.58a and b as well as 3.59,
there are five pins, extending out from the PowerPC chip, that the SCC is connected to for
data transmission and reception: transmit (TxD), receive (RxD), carrier detect (CDx), collision
on the transceiver (CTSx), and request-to-send (RTS). The way these pins work together is
described in the next few paragraphs.

. * TXDx - transmit pins

SCC Pin Summary * RXDx - receive pins
* CDx - carrier detect pins
* CTSx - clear-to-send pins
* RTSx - request-to-send pins

<~— PA[15]/ RXD1

= PA[14]/TXD1

< PC[10]/CD1*/TGATE 1

-~ PC[11 TS1*

PB[19] / RTS1*/L1ST1 or PC[15)/RTS1*/L1ST1/ DREQO

< PA[13]/ RXD2

— PA[12] / TSD2

<~ PCI[8]/CD2"/ TGATE2

- PCI[9] / CTS2*
18]/ RTS2* / L1ST1 or PC[14] / RTS2* / L1ST2 / DREQ1
. PD[11] / RXD3

-~ PD[10]/TSD3

<~——— PC[6]/CD3*/L1RSYNCB

<~—— PCJ[7]/ CTS3*/ SDACK2 / LITSYNCB

—~ PD[7]/RTS3*

|/ RXD4

%/TXD4

]

]

/CD4* / LIRSYNCA
;CTS4* / SDACK1 /L1TSYNCA

9
8
«— PC[4
5
6]/ RTS4*

Figure 3.59: SCC pinouts.[34]

124 Chapter 3

In either receive or transmit modes, the internal SCC clock is activated. In asynchronous
transfers, every UART has its own internal clock that, though unsynchronized with the

clock in the UART of the external I/O device, is set at the same baud rate as that of the UART
it is in communication with. The carrier detect (CDX) is then asserted to allow the SCC to
receive data, or the collision on the transceiver (CTSx) is asserted to allow the SCC to
transmit data.

As mentioned, data is encapsulated into frames in asynchronous serial transmissions. When
transmitting data, the SDMA transfers the data to the transmit FIFO and the request-to-send
pin asserts (because it is a transmit control pin and asserts when data is loaded into the trans-
mit FIFO). The data is then transferred (in parallel) to the shifter. The shifter shifts the data
(in serial) into the delimiter, which appends the framing bits (i.e., start bits, stop bits, and so
on). The frame is then sent to the encoder for encoding before transmission. In the case of an
SCC receiving data, the framed data is then decoded by the decoder and sent to the delimiter
to strip the received frame of nondata bits, such as start bit, stop bit(s), and so on. The data

is then shifted serially into the shifter, which transfers (in parallel) the received data into the
receive data FIFO. Finally, the SDMA transfers the received data to another buffer for contin-
ued processing by the processor.

MPC860 SMC in UART Mode

As shown in Figure 3.60a, the internal design of the SMC differs greatly from the internal
design of the SCC (shown in Figures 3.58a and b), and in fact has fewer capabilities than
an SCC. An SMC has no encoder, decoder, delimiter, or receive/transmit FIFO buffers.

It uses registers instead. As shown in Figure 3.60b, there are only three pins that an SMC

is connected to: a transmit pin (SMTXDx), a receive pin (SMRXDx), and sync signal pin
(SMSYN). The sync pin is used in transparent transmissions to control receive and transmit
operations.

Baud Rate
Generator(s) CLKx

U-Bus

{ MUX

t
SDMA | Control Registers |

Peripheral Bus

Clock Generator

T l Internal Clocks
Receive Transmit Control
Data Data Unit SYNC

Register Register

RxD " + TxD
—={ Shifter |

Figure 3.60a: SMC.[3-47]

Embedded Processors 125

*SMTXDx - transmit pins
*SMRXDx - receive pins
*SMSYNXx - synch signal pins for transparent

/SMRXD1

/SMTXD1
/SMSYN1/SDACK1
/SMRXD2/L1CLKOA
/SMTXD2/L1CLKOB
/SMSYN2/SDACK2

PB[24
PB[25

~—— PB[23

-~ PB[20

PB[21

~—— PB[22

Figure 3.60b: SMC pins.[3‘47]

Data is received via the receive pin into the receive shifter, and the SDMA then transfers the
received data from the receive register. Data to be transmitted is stored in the transmit register
and then moved into the shifter for transmission over the transmit pin. Note that the SMC does
not provide the framing and stripping of control bits (i.e., start bit, stop bit[s], and so on) that
the SCC provides.

Processor Serial /O Example: An Integrated Serial Peripheral Interface (SPI)

The SPI is an example of a full-duplex serial interface that can be integrated into the master
processor and that does synchronous serial transmission. Like the UART, an SPI needs to
exist on both sides of the communication channel (in the I/O device as well as on the embed-
ded board) in order for this communication scheme to work. In this example, we examine the
MPCR860 internal SPI, which resides in the PowerPC’s Communication Processor Module
(shown in Figure 3.61).

4K System Interface Unit
1 Cache @)
Core I MMU U-bus Memory Controller |H=
4KD BIU T
Cache System Functions
PowerPC™ @ D MMU Real Time clock
PCMCIA Interface
Parallel I/O '{/rlwternal Interrupt 4PGeneraI
Baud Rate emory urpose
Generators Space’ | Controller | fimers 1 g 'a%nal
Parallel Interface | 32-Bit RISC pController |
2 Virtual TOMA
PO” Internal | 2nd Program ROM ["jA
Timers Peripheral Bus t @
!_L\scm !_t_\sccz !_L\sccs !_t_\scm !_t_\smm /—L\SMC spn ECommun,cat,ons
Processor
| Time Slot Assigner Senal Interface Module

Figure 3.61: MPC860 SPI.[3-48]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

126 Chapter 3

In a synchronous serial communication scheme, both devices are synchronized by the

same clock signal generated by one of the communicating devices. In such a case, a mas-
ter-slave relationship develops in which the master generates the clock signal which it and
the slave device, adheres to. It is this relationship that is the basis of the four pins that the
MPC860 SPI is connected to (as shown in Figure 3.62b): the master out/slave in or transmit
(SPIMOSI), master in/slave out or receive (SPIMISO), clock (SPICLK), and slave select
(SPISEL).

U-Bus

'
| Control Registers |
i

Peripheral Bus

1

|SPI Mode Reg | |Transmit Reg | |Receive Reg |

‘ —— L o
@:ﬂ (1) shift_Register =
A

RXD
IN CLK
Pins Interface | SPI BRG
SPISEL* SPIMOSI SPIMISO SPICLK BRGCLK

Figure 3.62a: SP1.[34%]

* SPIMOSI - master out, slave in pin

* SPIMOSI - master in, slave out pin

* SPICLK - SPI clock pin

* SPISEL - SPI slave select pin, used when 860 SPI is in slave mode

<~——— PB[29])/SPIMOSI
<~——— PB[28]/SPIMISO/BRGO4
PB[30]/SPICLK
PB[31])/SPISEL*/REJECT1*

Clock TV JULAILATUL

spivosi _ K000000C___0000000C
spimiso —_000CO00C—0000000C
SPISEL* '\ N\

Figure 3.62b: SPI pins.[34°]

When the SPI operates in a master mode, it generates the clock signals, while in slave mode,
it receives clock signals as input. SPIMOSI in master mode is an output pin, SPMISO in
master mode is an input pin, SPICLK supplies an output clock signal in master mode that

Embedded Processors 127

synchronizes the shifting of received data over the SPIMISO pin or shifts out transmitted
data over SPIMOSI. In slave mode, SPIMOSI is an input pin, SPIMISO is an output pin, and
SPICLK receives a clock signal from the master synchronizing the shifting of data over the
transmit and receive pins. The SPISEL is also relevant in slave mode because it enables input
into the slave.

The way these pins work together, along with the internal components of the SPI, is shown

in Figure 3.62a. Essentially, data is received or transmitted via one shift register. If data is
received, it is then moved into a receive register. The SDMA then transfers the data into a
receive buffer that usually resides in main memory. In the case of a data transmission, the
SDMA moves the data to be transmitted from the transfer buffer in main memory to the trans-
mit register. SPI transmission and reception occurs simultaneously; as data is received into the
shift register, it shifts out data that needs to be transmitted.

3.3.3.2 Parallel 1/0

I/0 components that transmit data in parallel allow data to be transferred in multiple bits
simultaneously. Just as with serial I/O, parallel I/O hardware is also typically made up of some
combination of six main logical units, as introduced at the start of this chapter, except that the
port is a parallel port and the communication interface is a parallel interface.

Farallel interfaces manage the parallel data transmission and reception between the master
CPU and either the I/O device or its controller. They are responsible for decoding data bits
received over the pins of the parallel port, transmitted from the I/O device, and receiving data
being transmitted from the master CPU, and then encoding these data bits onto the parallel
port pins.

They include reception and transmission buffers to store and manipulate the data they are
responsible for transmitting either to the master CPU or an I/O device. Parallel data transmis-
sion and reception schemes, like serial I/O transmission, generally differ in terms of the direc-
tion in which data can be transmitted and received as well as the actual process of how the
data bits are transmitted (and thus received) within the data stream. In the case of direction of
transmission, as with serial 1/O, parallel I/O uses simplex, half-duplex, or full-duplex modes.
Again, like serial I/O, parallel I/O can be transmitted asynchronously or synchronously.
Unlike serial I/O, parallel I/O does have a greater capacity to transmit data, because multiple
bits can be transmitted or received simultaneously. Examples of 1/O devices that transfer and
receive data in parallel include IEEE1284 controllers (for printer/display I/O devices), CRT
ports, and SCSI (for storage I/O devices).

3.3.3.3 Interfacing the Master Processor with an I/O Controller

When the communication interface is integrated into the master processor, as is the case with
the MPC860, it is a matter of connecting the identical pins for transmitting data and receiving

128 Chapter 3

data from the master processor to an I/O controller. The remaining control pins are then con-
nected according to their function. In Figure 3.63a, for instance, the request to send (RTS) on the
PowerPC is connected to transmit enable (TENA) on the Ethernet controller, since RTS is auto-
matically asserted if data is loaded into the transmit FIFO, indicating to the controller that data
is on its way. The collision on the transceiver (CTS) on the PowerPC is connected to the clear to
send (CLSN) on the Ethernet controller, and the carrier detect (CD) is connected to the receive
enable (RENA) pin, since when either CD or CTS is asserted, a transmission or data reception
can take place. If the controller does not clear to send or receive enable to indicate data is on its
way to the PowerPC, no transmission or reception can take place. Figure 3.63b shows a MPC860
SMC interfaced to an RS-232 IC, which takes the SMC signals (transmit pin [SMTXDx] and
receive pin [SMRXDx]) and maps them to an RS-232 port in this example.

Finally, Figure 3.63c shows an example of a PowerPC SPI in master mode interfaced with
some slave IC, in which the SPIMISO (master in/slave out) is mapped to SPISO (SPI slave

MPC860 TXD1 T MC68160
RTS1 TENA - TPTX+——
CLKn TCLK TPTX—
RXD1 RX
TPRX+|—
CD1~ RENA
CLKm RCLK TPRX=
CTS1* CLSN

Figure 3.63a: MPC860 SCC UART interfaced to Ethernet controller.[3-5]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

MC145707DW
Cl+ C2+
1OuF‘L_ _‘L10|,1F
Tlot- ca- | I
COBY 1x1 —Rscpi*
D12 T;<(2 A
SMTXD1 DI3 ™3 —TXDi* |Rs232
SMRXD1 88; Ex; L RxD1* |Connector
— X
T/"ga#ﬁ:—DOS Rx3 —DTR1*
RS232 Enable STB

Figure 3.63b: MPC860 SMC interfaced to RS-232.[3-5I

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

Embedded Processors 129

Interface
MPC860 MCM2814
Example EEPROM
SPIMISO SPISO
SPIMOSI SPISI
SPICLK SPICK
Port Pin SPISS

Figure 3.63c: MPC860 SPI interfaced to ROM.[3-51

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

out). Since in master mode SPIMISO is an input port, SPIMOSI (master out/slave in) is
mapped to SPISI (slave in). Since SPIMOSI in master mode is an output port, SPICLK is
mapped to SPICK (clock) because both ICs are synchronized according to the same clock,
and SPISEL is mapped to SPISS (Slave Select input), which is only relevant if the PowerPC
is in slave mode. If it were the other way around (that is, PowerPC in slave mode and slave
IC in master mode), the interface would map identically.

Finally, for a subsystem that contains an I/O controller to manage the I/O device, the interface
between an I/0 controller and master CPU (via a communications interface) is based on four
requirements:

e An ability for the master CPU to initialize and monitor the I/O controller. 1/O
controllers can typically be configured via control registers and monitored via status
registers. These registers are all located on the I/O controller itself. Control registers
can be modified by the master processor to configure the I/O controller. Status
registers are read-only registers in which the master processor can get information
as to the state of the I/O controller. The master CPU uses these status and control
registers to communicate and/or control attached I/O devices via the I/O controller.

® A way for the master processor to request I/0. The most common mechanisms used
by the master processor to request I/O via the I/O controller are special I/O instruc-
tions (I/O mapped) in the ISA and memory-mapped /0, in which the I/O controller
registers have reserved spaces in main memory.

® A way for the I/O device to contact the master CPU. I/O controllers that have the abil-
ity to contact the master processor via an interrupt are referred to as interrupt-driven
I/0. Generally, an I/O device initiates an asynchronous interrupt requesting signaling
to indicate (for example) that control and status registers can be read from or written
to. The master CPU then uses its interrupt scheme to determine when an interrupt will
be discovered.

130 Chapter 3

DMA controller.

3.3.4 Processor Buses

Like the CPU buses, the processor’s buses interconnect the processor’s major internal com-
ponents (in this case the CPU, memory, and I/O, as shown in Figure 3.64), carrying signals

between the various components.

Some mechanism for both to exchange data. This refers to the process by which
data is actually exchanged between the I/O controller and the master processor.

In a programmed transfer, the master processor receives data from the 1/O control-
ler into its registers, and the CPU then transmits this data to memory. For memory-
mapped I/O schemes, DMA (direct memory access) circuitry can be used to bypass
the master CPU entirely. DMA has the ability to manage data transmissions or
receptions directly to and from main memory and an I/O device. On some systems,
DMA is integrated into the master processor, and on others there is a separate

!_L\scm !_t_zlsco Ft_alscc !_¢_AISCC !_L\smm !_tﬂsmc FL\SPH [12C] communications

| Time Slot Assigner |

Serial Interface

Processor
Module

4K System Interface Unit
1 Cache @)
Core I MMU U-bus Memory Controller | T—
4K D BIU - -
- | Cache System Functions
PowerPC™ @ D MMU Real Time clock
P CMCIA Interface
Parallel /0 Internal 4 General
Baud Rate | | Memory (I;r;t,?trrr;%r Purpose :
Generators Space Timers 155,\/?:nal
Parallel Interffac [32-Bit RISC pController | DMAs;
Por’(Internal |_andP rogram ROM m‘ 2 Virtual 1IDMA
Timers P eripheral Bus

Figure 3.64: MPC860 processor buses.[>51]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

the buses within the CPU.

Note: In the case of the MPC860, the processor buses include the U-bus interconnecting
the system interface unit (SIU), the communications processor module (CPM), and the
PowerPC core. Within the CPM there is a peripheral bus as well. Of course, this includes

Embedded Processors 131

A key feature of processor buses is their width, which is the number of bits that can be trans-
mitted at any one time. This can vary depending on both the buses implemented within the
processor—for example: x86 contains bus widths of 16/32/64, 68K has 8/16/32/ 64 bit buses,
MIPS 32 has 32 bit buses, and so forth—as well as the ISA register size definitions. Each

bus also has a bus speed (in MHz) that impacts the performance of the processor. Buses
implemented in real-world processor designs include the U, peripheral, and CPM buses in the
MPC8xx family of processors and the C and X buses in the x86 Geode.

To avoid redundancy, buses are covered in more detail in Chapter 4, and more examples are
provided there.

3.4 Processor Performance

There are several measures of processor performance, but are all based on the processor’s
behavior over a given length of time. One of the most common definitions of processor per-
formance is a processor’s throughput, the amount of work the CPU completes in a given
period of time.

A processor’s execution is ultimately synchronized by an external system or master clock,
located on the board. The master clock is simply an oscillator producing a fixed frequency
sequence of regular on/off pulse signals that is usually divided or multiplied within the CPU’s
CU (control unit) to generate at least one internal clock signal running at a constant number
of clock cycles per second, or clock rate, to control and coordinate the fetching, decoding, and
execution of instructions. The CPU’s clock rate is expressed in MHz (megahertz).

Using the clock rate, the CPU’s execution time, which is the total time the processor takes

to process some program in seconds per program (total number of bytes), can be calculated.
From the clock rate, the length of time a CPU takes to complete a clock cycle is the inverse of
the clock rate (1/clock rate), called the clock period or cycle time and expressed in seconds per
cycle. The processor’s clock rate or clock period is usually located in the processor’s specifica-
tion documentation.

Looking at the instruction set, the CPI (average number of clock cycles per instruction) can be
determined in several ways. One way is to obtain the CPI for each instruction (from the proc-
essor’s instruction set manual) and multiply that by the frequency of that instruction, then add
up the numbers for the total CPL.

CPI = Y (CPI per instruction * instruction frequency)
At this point the total CPU’s execution time can be determined by:

CPU execution time in seconds per program = (total number of
instructions per program or instruction count) * (CPI in number

132 Chapter 3

of cycle cycles / instruction) * (clock period in seconds per
cycle) = ((instruction count) * (CPI in number of cycle cycles /
instruction)) / (clock rate in MHz)

The processor’s average execution rate, also referred to as throughput or bandwidth, reflects
the amount of work the CPU does in a period of time and is the inverse of the CPU’s execu-
tion time:

CPU throughput (in bytes/sec or MB/sec) = 1 / CPU execution
time = CPU performance

Knowing the performance of two architectures (Geode and SA-1100, for example), the spee-
dup of one architecture over another can then be calculated as follows:

Performance (Geode) / Performance (SA-1100) = Execution Time
(SA-1100) / Execution Time (Geode) = X

Therefore, Geode is X times faster than SA-1100.
Other definitions of performance besides throughput include:

e A processor’s responsiveness, or latency, which is the length of elapsed time a
processor takes to respond to some event

e A processor’s availability, which is the amount of time the processor runs normally
without failure; reliability, the average time between failures or MTBF (mean time
between failures); and recoverability, the average time the CPU takes to recover from
failure or mean time to recover (MTTR)

On a final note, a processor’s internal design determines a processor’s clock rate and the CPI;
thus a processor’s performance depends on which ISA is implemented and how the ISA is
implemented. For example, architectures that implement Instruction-level Parallelism ISA
models have better performance over the application-specific and general-purpose based
processors due to the parallelism that occurs within these architectures. Performance can be
improved because of the actual physical implementations of the ISA within the processor,
such as implementing pipelining in the ALU.

Note: There are variations on the full adder that provide additional performance
improvements, such as the carry lookahead adder (CLA), carry completion adder, con-
ditional sum adder, carry select adder, and so on. In fact, some algorithms that can
improve the performance of a processor do so by designing the ALU to be able to proc-
ess logical and mathematical instructions at a higher throughput—a technique called

pipelining.

Embedded Processors 133

The increasing gap between the performance of processors and memory can be improved by
cache algorithms that implement instruction and data prefetching (especially algorithms that
use branch prediction to reduce stall time) and lockup-free caching. Basically, any design fea-
ture that allows for either an increase in the clock rate or a decrease in the CPI will increase
the overall performance of a processor.

3.4.1 Benchmarks

One of the most common performance measures used for processors in the embedded market
is millions of instructions per seconds, or MIPS.

MIPS = Instruction Count / (CPU execution time * 10°) = Clock
Rate / (CPI * 10°)

The MIPS performance measure gives the impression that faster processors have higher
MIPS values, since part of the MIPS formula is inversely proportional to the CPU’s execution
time. However, MIPS can be misleading in terms of this assumption for a number of reasons,
including:

e Instruction complexity and functionality aren’t taken into consideration in the MIPS
formula, so MIPS cannot compare the capabilities of processors with different ISAs.

e MIPS can vary on the same processor running different programs (with varying
instruction count and different types of instructions).

Software programs called benchmarks can be run on a processor to measure its performance.

Endnotes
[3.1] “EnCore 400 Embedded Processor Reference Manual,” Revision A, p. 9.
[3.2] “MPC8xx Instruction Set Manual,” Motorola, p. 28.

[3.3] MIPS32™ Architecture for Programmers Volume I1: The MIPS32™ [nstruction Set,
Rev 0.95, MIPS Technologies, p. 91.

[3.4] MPC8xx Instruction Set Manual, Motorola, p. 28.

[3.5] MIPS32™ Architecture for Programmers Volume I1: The MIPS32™ [nstruction Set,
Rev 0.95, MIPS Technologies, pp. 39 and 90.

[3.6] ARM Architecture, Pietikainen, Ville, pp. 12 and 15.
[3.7] Practical Electronics, Scherz, Paul, p. 538.

[3.8] Texas Instruments website: http://focus.ti.com/docs/apps/catalog/resources/
blockdiagram.jhtml?appld=178&bdld=112.

134

Chapter 3

[3.9]

[3.10]
[3.11]
[3.12]
[3.13]
[3.14]
[3.15]
[3.16]
[3.17]
[3.18]
[3.19]
[3.20]
[3.21]
[3.22]
[3.23]
[3.24]
[3.25]
[3.26]
[3.27]
[3.28]
[3.29]
[3.30]
[3.31]
[3.32]
[3.33]
[3.34]
[3.35]

“A Highly Integrated MPEG-4 ASIC for SDCAM Application,” Chung-Ta Lee,
Jun Zhu, Yi Liu, and Kou-Hu Tzou, p. 4.

aJile Systems website: www.ajile.com.

National Semiconductor, “Geode User’s Manual,” Rev. 1.
Net Silicon “Net+ARM40 Hardware Reference Guide.”
Zoran website: www.zoran.com.

Infineon Technologies website: www.infineon.com.
Philips Semiconductor website: www.semiconductors.philips.com.
Freescale, “MPC860 PowerQUICC User’s Manual.”
National Semiconductor, “Geode User’s Manual,” Rev. 1.
Freescale, “MPC860 PowerQUICC User’s Manual.”
Freescale, “MPC860 PowerQUICC User’s Manual.”
Practical Electronics, Scherz, Paul.

The Electrical Engineering Handbook, Dorf, p. 1742.
The Electrical Engineering Handbook, Dorf, p. 1742.
Freescale, “MPC860 PowerQUICC User’s Manual.”
Practical Electronics, Scherz, Paul.

Freescale, “MPC860 PowerQUICC User’s Manual.”
Practical Electronics, Scherz, Paul.

Practical Electronics, Scherz, Paul.

Practical Electronics, Scherz, Paul.

Freescale, “MPC860 PowerQUICC User’s Manual.”
Practical Electronics, Scherz, Paul, p. 538.

Practical Electronics, Scherz, Paul.

Practical Electronics, Scherz, Paul.

Computer Organization and Programming, Ramm, Dietolf, p. 14.
Practical Electronics, Scherz, Paul.

Practical Electronics, Scherz, Paul.

Embedded Processors

135

[3.36]
[3.37]
[3.38]
[3.39]
[3.40]
[3.41]
[3.42]
[3.43]
[3.44]
[3.45]
[3.46]
[3.47]
[3.48]
[3.49]
[3.50]
[3.51]

Practical Electronics, Scherz, Paul.

“This RAM, That RAM, Which Is Which?”’ Robbins, Justin.
Freescale, “MPC860 PowerQUICC User’s Manual.”
Freescale, “MPC860 PowerQUICC User’s Manual.”
Computers as Components, Wolf, Wayne, p. 206.
Embedded Controller Hardware Design, Arnold, Ken, Newnes Press.
Freescale, “MPC860 Training Manual.”

Embedded Microcomputer Systems, Valvano.

Freescale, “MPC860 Training Manual.”

Freescale, “MPC860 PowerQUICC User’s Manual.”
Freescale, “MPC860 Training Manual.”

Freescale, “MPC860 Training Manual.”

Freescale, “MPC860 PowerQUICC User’s Manual.”
Freescale, “MPC860 Training Manual.”

Freescale, “MPC860 Training Manual.”

Freescale, “MPC860 PowerQUICC User’s Manual.”

This page intentionally left blank

Embedded Board Buses and 1/O

Tammy Noergaard

4.1 Board 1/O

Input/output (I/O) components on a board are responsible for moving information into and
out of the board to I/O devices connected to an embedded system. Board I/O can consist of
input components, which only bring information from an input device to the master processor;
output components, which take information out of the master processor to an output device; or
components that do both (see Figure 4.1).

EMBEDDED SYSTEM BOARD

Controls usage and Master Processor
manipula{ion of data
1

Data from ICPU or input

5 System components commonly connected via buses

devices stored in Memory
memory until a CPU
or output device request
' v v
Brings data into the Input Output Gets data out of the
Embeddled System 7 Embeddeclr' System
1 : 1

Figure 4.1: Von Neumann-based 1/O block diagram.

Any electromechanical system, both embedded and nonembedded and whether conventional
or unconventional, can be connected to an embedded board and act as an I/O device. I/O is a
high-level group that can be subdivided into smaller groups of output devices, input devices,
and devices that are both input and output devices. Output devices receive data from board
I/O components and display that data in some manner, such as printing it to paper, to a disk,
or to a screen or a blinking LED light for a person to see. An input device such as a mouse,

138 Chapter 4

keyboard, or remote control transmits data to board I/O components. Some I/O devices can do
both, such as a networking device that can transmit data to and from the Internet, for instance.
An I/0 device can be connected to an embedded board via a wired or wireless data transmis-
sion medium such as a keyboard or remote control or can be located on the embedded board
itself, such as an LED.

Because 1/0 devices are so varied, ranging from simple circuits to other complete embedded
systems, board I/O components can fall under one or more of several different categories, the
most common including:

e Networking and communications I/O (the physical layer of the OSI model)
e Input (keyboard, mouse, remote control, vocal, etc.)
e Graphics and output I/O (touch screen, CRT, printers, LEDs, etc.)

e Storage I/O (optical disk controllers, magnetic disk controllers, magnetic tape control-
lers, etc.)

e Debugging I/O (BDM, JTAG, serial port, parallel port, etc.)

e Real-time and miscellaneous I/O (timers/counters, analog-to-digital converters and
digital-to-analog converters, key switches, and so on)

In short, board I/0 can be as simple as a basic electronic circuit that connects the master proc-
essor directly to an I/O device, such as a master processor’s I/O port to a clock or LED located
on the board, to more complex I/O subsystem circuitry that includes several units, as shown

in Figure 4.2. I/O hardware is typically made up of all or some combination of six main
logical units:

e The transmission medium, a wireless or wired medium connecting the I/O device to
the embedded board for data communication and exchanges

e A communication port, to which the transmission medium connects on the board or, if
a wireless system, which receives the wireless signal

e A communication interface, which manages data communication between master
CPU and I/O device or I/O controller and is responsible for encoding data and decod-
ing data to and from the logical level of an IC and the logical level of the I/O port; this
interface can be integrated into the master processor or can be a separate IC

e An /O controller, a slave processor that manages the I/0 device
® /O buses, the connection between the board I/O and master processor

e The master processor integrated 1/0

Embedded Board Buses and I/O 139

1 Other Controllers i

1

: 1

Master |

P | Processor !

L e e e immim = — — —

Port

Figure 4.2: Ports and device controllers on an embedded board.

{ Port

Monitor

The I/O on a board can thus range from complex combination of components, as shown in

Figure 4.3a, to a few integrated I/O board components, as shown in Figure 4.3b.

: I/O Devices
Communication port
”””””””””””””””””” Embedded Board & o1 . CRT
: . v____Transmission
. Memory | i Video ' Parallel | 7edUm
7 Integrated master CPU " (Frame Buffer) i i Controller ¢ Port ‘
Parallel Interface : i o 1 LCD
A . |
. I/O bus
The master processor
integrated I/O and

communication interface

Figure 4.3a: Complex I/O subsystem.

The actual make-up of an I/O system implemented on an embedded board, whether using con-
nectors and ports or using an I/0 device controller, is dependent on the type of I/0 device con-
nected to, or located on, the embedded board. This means that, although other factors such as
reliability and expandability are important in designing an I/O subsystem, what mainly
dictates the details behind an I/O design are the features of the 1/O device—its purpose within

the system—and the performance of the I/O subsystem, discussed in Section 4.4.

140 Chapter 4

I/O Port (Pin)

{ Master CPU
A
° : ;
° i
. +V

The master processor ! _
integrated 1/O i 1/O Device

(LED)

Figure 4.3b: Simple 1/O subsystem.

Within the various I/O categories—networking, debugging, storage, and so forth—board I/O is
typically subgrouped according to the way data is managed (transmitted). Note that the actual
subgroups may be entirely different depending on the architecture viewpoint, as related to the
embedded systems model. “Viewpoint” means that hardware and software can view, and hence
subgroup, board I/O differently. Within software, the subgroups can even differ depending on the
level of software—system software versus application software, operating system versus device
drivers, and so on. For example, in many operating systems board I/O is considered either as
block or character 1/0. In short, block I/O manages in fixed block sizes and is addressable only
in blocks. Character I/O, on the other hand, manages data in streams of characters, the size of the
character depending on the architecture—such as one byte, for example.

From the hardware viewpoint, I/O manages (transmits and/or stores) data in serial, in parallel,
or both.

4.2 Managing Data: Serial vs. Parallel 1/O

Board I/O that can transmit and receive data in serial is made up of components in which data
(characters) are stored, transferred, and received one bit at a time. Serial I/O hardware is typically
made up of some combination of the six main logical units outlined at the start of the chapter.
Serial communication includes within its I/O subsystem a serial port and a serial interface.

Serial interfaces manage the serial data transmission and reception between the master CPU
and either the I/O device or its controller. They include reception and transmission buffers to
store and encode or decode the data they are responsible for transmitting to either the mas-

ter CPU or an I/0 device. Serial data transmission and reception schemes generally differ in

Embedded Board Buses and I/O 141

terms of the direction in which data can be transmitted and received as well as the actual trans-
mission/reception process—in other words, the way the data bits are transmitted and received
within the data stream.

Data can be transmitted between two devices in one of three directions: in a one-way direc-
tion, in both directions but at separate times because they share the same transmission line,
and in both directions simultaneously. Serial I/O data communication that uses a simplex
scheme is one in which a data stream can only be transmitted—and thus received—in one
direction (see Figure 4.4a). A half-duplex scheme is one in which a data stream can be trans-
mitted and received in either direction but in only one direction at any one time (see Figure
4.4b). A full-duplex scheme is one in which a data stream can be transmitted and received in
either direction simultaneously (see Figure 4.4c).

Embedded Board Printer
Serial Interface Serial Interface
Transfer Data _l> Receive Data
(TxData) Serial Port Serial Port (RxData)

Ground (Gnd) ——— — Ground (Gnd)

Figure 4.4a: Simplex transmission scheme example.

Embedded Board ‘ ‘ Modem
Serial Interface

Serial Interface

Transfer Data Transfer Data
(TxData) l} % (TxData)
RTS

RTS

Serial Serial
Port
Receive Data Port Receive Data
(RxData) (RxData)
Ground (Gnd) ———— — Ground (Gnd)

Figure 4.4b: Half-duplex transmission scheme example.

Within the actual data stream, serial I/O transfers can occur either as a steady (continuous)
stream at regular intervals regulated by the CPU’s clock, referred to as a synchronous transfer,
or intermittently at irregular (random) intervals, referred to as an asynchronous transfer.

In an asynchronous transfer (shown in Figure 4.5), the data being transmitted is typically
stored and modified within a serial interface’s transmission buffer. The serial interface at the
transmitter divides the data stream into groups, called packets, that typically range from either
4 to 8 bits per character or 5 to 9 bits per character. Each of these packets is then encapsulated
in frames to be transmitted separately. The frames are packets modified (before transmission)

142 Chapter 4

Embedded Board ‘ ‘ VoIP Phone
Serial Interface Serial Interface
Transfer Data %l_ Transfer Data
(TxData) _l> (TxData)
Serial Serial
Receive Data < —|>— Receive Data

(RxData) Rl Rl (RxData)

Ground (Gnd) Ground (Gnd)

Figure 4.4c: Full-duplex transmission scheme example.

STOP
bit(s) START
8 data bits _bit
Embedded System dle Idle Embedded System
Transmitter 00|11 10|11 Receiver
MSB 4 LSB
Serial Frame '

Sampling'in middle
of data bit period

Figure 4.5: Asynchronous transfer sample diagram.

by the serial interface to include a START bit at the start of the stream and a STOP bit or bits
(this can be 1, 1.5, or 2 bits in length to ensure a transition from “1” to “0” for the START bit
of the next frame) at the end of the data stream being transmitted. Within the frame, after the
data bits and before the STOP bit, a parity bit may also be appended. A START bit indicates
the start of a frame, the STOP bit(s) indicate the end of a frame, and the parity is an optional
bit used for very basic error checking. Basically, parity for a serial transmission can be NONE,
for no parity bit and thus no error checking; EVEN, where the total number of bits set to “1”
in the transmitted stream, excluding the START and STOP bits, must be an even number in
order for the transmission to be a success; and ODD, where the total number of bits set to “1”
in the transmitted stream, excluding the START and STOP bits, must be an odd number in
order for the transmission to be a success. Between the transmission of frames, the commu-
nication channel is kept in an idle state, meaning that a logical level “1”” or nonreturn to zero
(NRZ) state is maintained.

The serial interface of the receiver then receives frames by synchronizing to the START bit of a
frame, delays for a brief period, and then shifts in bits, one at a time, into its receive buffer until
reaching the STOP bit (s). For asynchronous transmission to work, the bit rate (bandwidth)

Embedded Board Buses and I/O 143

has to be synchronized in all serial interfaces involved in the communication. The bit rate is
defined as:

(number of actual data bits per frame / total number of bits per frame) * baud rate

The baud rate is the total number of bits (regardless of type) per some unit of time (kbits/sec,
Mbits/sec, etc.) that can be transmitted.

Both the transmitter’s serial interface and the receiver’s serial interface synchronize with sepa-
rate bit-rate clocks to sample data bits appropriately. At the transmitter, the clock starts when
transmission of a new frame starts and continues until the end of the frame so that the data
stream is sent at intervals the receiver can process. At the receiving end, the clock starts with
the reception of a new frame, delaying when appropriate (in accordance with the bit rate) and
then sampling the middle of each data bit period of time and then stopping when receiving the
frame’s STOP bit(s).

Embedded System Next Frame Previous Frame| pheqded System
Transmitter | e /001 11011 OI“ """" Receiver
MSB LSB
Serial Frame

Figure 4.6: Synchronous transfer sample diagram.

In a synchronous transmission (as shown in Figure 4.6), there are no START or STOP bits
appended to the data stream, and there is no idle period. As with asynchronous transmissions,
the data rates for receiving and transmitting must be in sync. However, unlike the separate
clocks used in an asynchronous transfer, the devices involved in a synchronous transmis-

sion are synchronizing off one common clock, which does not start and stop with each new
frame. On some boards, there may be an entirely separate clock line for the serial interface to
coordinate the transfer of bits. In some synchronous serial interfaces, if there is no separate
clock line, the clock signal may even be transmitted along with the data bits. The universal
asynchronous receiver-transmitter (UART) is an example of a serial interface that does asyn-
chronous serial transmission, whereas serial peripheral interface (SPI) is an example of a syn-
chronous serial interface.

Note: Various architectures that integrate a UART or other types of serial interfaces may
have different names and types for the same type of interface, such as the MPC860,
which has serial management controller (SMC) UARTSs, for example. Review the relevant
documentation to understand the specifics.

144 Chapter 4

Serial interfaces can either be separate slave ICs on the board or integrated onto the mas-

ter processor. The serial interface transmits data to and from an I/O device via a serial port
(shown in Figures 4.4a, b, and c). Serial ports are serial communication (COM) interfaces
that are typically used to interconnect off-board serial I/O devices to on-board serial board
I/0. The serial interface is then responsible for converting data that is coming to and from the
serial port at the logic level of the serial port into data that the logic circuitry of the master
CPU can process.

One of the most common serial communication protocols defining how the serial port is
designed and what signals are associated with the different bus lines is RS-232.

4.2.1 Serial I/O Example 1: Networking and Communications: RS-232

One of the most widely implemented serial I/O protocols for either synchronous or asynchro-
nous transmission is the RS-232 or EIA-232 (Electronic Industries Association-232), which is
primarily based on the EIA family of standards. These standards define

the major components of any RS-232 based system, which is implemented almost

entirely in hardware.

The hardware components can all be mapped to the physical layer of the OSI model (see
Figure 4.7). The firmware (software) required to enable RS-232 functionality maps to the
lower portion of the data link but will not be discussed in this section.

Application

Presentation

Session

Transport

Network

e s Data_Link
Ethernet

Physical

Figure 4.7: OSI model.

According to the EIA-232 standards, RS-232 compatible devices (shown in Figure 4.8) are
called either Data Terminal Equipment (DTE) or Data Circuit-terminating Equipment (DCE).
DTE devices are the initiators of a serial communication, such as a PC or embedded board.
DCE is the device that the DTE wants to communicate with, such as an I/O device connected
to the embedded board.

Embedded Board Buses and I/O 145

DTE B Transmission Medium - DCE
Embedded System 1 - ” | Embedded System 2

Figure 4.8: Serial network diagram.

The core of the RS-232 specification is called the RS-232 interface (see Figure 4.9). The RS-
232 interface defines the details of the serial port and the signals, along with some additional
circuitry that maps signals from a synchronous serial interface (such as SPI) or an asynchro-
nous serial interface (such as UART) to the serial port and by extension to the I/O device
itself. By defining the details of the serial port, RS-232 also defines the transmission medium,
which is the serial cable. The same RS-232 interface must exist on both sides of a serial com-
munication transmission (DTE and DCE or embedded board and I/O device), connected by an
RS-232 serial cable, in order for this scheme to work.

RS-232 System Model

Embedded Device

Master or Slave Processor

RS-232 Interface

Serial Port UART

R 7

RS-232 Cable

Figure 4.9: Serial components block diagram.

The actual physics behind the serial port—the number of signals and their definitions—
differs among the different EIA232 standards. The parent RS-232 standard defines a total
of 25 signals, along with a connector, called a DB25 connector, on either end of a wired
transmission medium, shown in Figure 4.10a. The EIA RS-232 Standard EIA574 defines
only nine signals (a subset of the original 25) that are compatible with a DB9 connector
(shown in Figure 4.10b), whereas the EIA561 standard defines eight signals (again a subset
of the original RS-232 25 signals) compatible with an RJ45 connector (see

Figure 4.10c).

Two DTE devices can interconnect to each other using an internal wiring variation on serial
cables called null modem serial cables. Since DTE devices transmit and receive data on the
same pins, these null modem pins are swapped so that the transmit and receive connections on
each DTE device are coordinated.

146 Chapter 4

Looking Into the DTE Device Connector

DB25 Male
DB25 q P Sec. Clear to Send —__ Shield Test Mode
Pin W | et et VR A= || 2e3 Sec. Received Line Signal Detect \:g 25 Transmitter Signal Timing (DTE Source)
1 FG Frame Ground/Shield Out In (Unassigned) — ¢4 g"/ Data Signal Rate Selector
2 BA TxD [Transmit Data —12 In Out (reserved for testing) —o. 20— Ring Indicator
3 BB RxD Receive Data —12 Out In (reserved for testing) — 9 21—~ Remote Loopback
4 CA RTS Request To Send 12 In Out Received Line Signal Detect — 8 20—~ DTE Ready
—7
5 | OB | CTS | ClearToSend 12 In__|Out | <— Signal Ground —— ¢ 1o Sec Request to Send
6 cC DSR__| Data Set Ready 12 eady 5 47> Local Loopback
7 AB 5G Signal Ground Clear to Send ; 2 16— Receiver Signal Timing (DCE Source)
8 CF DCD Data Carrier Detect +12 In Out Reques_t to Send 3 15\ Sec. Rgcelveq Data')
9 Positive Test Volt Received Data ‘/2 ‘4\ Transmitter Signal Timing (DCE Source)
ostiive 1est Yolage Transmitted Data 1 Sec. Transmitted Data
10 Negative Test Voltage Shield ~
11 Not Assigned
12 sDCD | Secondary DCD +12 In Out
13 sCTS Secondary CTS +12 In Out) .
14 sTxD | Secondary TxD —12 out In Looking Into the DCE Device Connector
15 DB TxC DCE Transmit Clock In Out DB25 Female
16 sRxD Scondary RxD -12 In Out Shield —__ 4 Sec. Received Data
17 DD RxC Receive Clock In Out Received Data —__ , ‘4/ Transmitter Signal Timing (DCE Source)
18 L Local Loopback Transmitted Data —_ 3 12 Sec. Transmitted Data
19 SRTS | Secondary RTS 12 Out n Clearto Send — 4 47— Receiver Signal Timing (DCE Source)
20 | CD DTR | Data Terminal Ready | +12 Out | In Request to Send —5 18—~ Local Loopback
21 | RL__| SQ | Signal Quality 2 in__|out DOE Ready — 2 o B P o Send
22| CE RI Ring Indicator 12 in_|out __ Signal Ground —— ¢ 20> DTE Ready
Received Line Signal Detect — — Remote Loopback
23 SEL Speed Selector DTE In Out 9 22— -
24 DA TOK Speed Selector DCE out n (reserved for testing) 0 23\ Ring Indicator
(reserved for testing) 11 24, Data Signal Rate Selector
25 ™ ™ Test Mode +12 In Out (Unassigned) ?12 25\ Transmitter Signal Timing (DTE Source)
Sec. Received Line Signal Detect /13 Shield Test Mode
Sec. Request to Send
Figure 4.10a: RS-232 signals and DB25 connector.
Leading Into DTE Device DB9 Male
Signal Ground 5 ‘
. 9 Ring Indicator
DTEReady 4 | @
. 8 Clear to Send
Transmitted Data 3 ‘
. 7 Request to Send
Received Data 2 | (@) BE - —
. 6 DCE Ready Pin Name Signal Description Voltage DTE | DCE
Received Line Signal Detect 1 ‘ 1 109 DCD Data Carrier Detect +12 In Out
2 104 RxD Receive Data —12 Out In
3 103 TxD Transmit Data —12 In Out
2 | 4 108 DTR Data Terminal Ready +12 Out In
5 102 SG Signal Ground
. - 6 107 DSR Data Set Ready +12
Leading Into DCE Device DB9 Female 7 | 105/133 | RTS | RequestTo Send 12 in__| Out
8 106 CTS Clear To Send +12 In Out
. X . 9 125 RI Ring Indicator +12 In Out
Received Line Signal Detect 1 O
O 6 DCE Ready
Transmitted Data 2 O
O 7 Clear to Send
Received Data 3 O
O 8 Request to Send
DTE Ready 4 O
O | 9 Ring Indicator
Signal Ground 5 O

Figure 4.10b: RS-232 signals and DB9 connector.

4.2.2 Example: Motorola/Freescale MPC823 FADS Board RS-232 System Model

The serial interface on the Motorola/Freescale FADS board (a platform for hardware and
software development around the MPC8xx family of processors) is integrated in the master
processor, in this case the MPC823. To understand the serial port, the other major serial com-
ponent located on the board, one only has to read the board’s hardware manual.

Embedded Board Buses and I/O 147
Same Leading Into DTE Device and DCE Device
Requestto Send 8 mmm l:,ang Name Signal Description Voltage DTE | DCE

Clear to Send 7 = 1 125 RI Ring Indicator 12 in Out
Transmit Data 6 == 2 109 DCD Data Carrier Detect +12 In Out
Receive Data 5 wem g 3 108 DTR Data Terminal Ready +12 Out In

Signal Ground 4 s 4 102 SG Signal Ground
Data Terminal Ready 3 mmm 5 104 RxD Receive Data —12 Out In
, v 6 | 103 TxD | Transmit Data 12 in Out
Data Carrier Detect 2 mmm 7 | 106 CTS | Clear To Send [EP) in Out
Ring Indicator 1 s 8 105/133 | RTS Request To Send +12 In Out

Figure 4.10c: RS-232 signals and RJ45 connector.

Section 4.9.3 of The Motorola/Freescale 8xxFADS User’s Manual (Rev. 1) details the RS-232
system on the Motorola/Freescale FADS board as follows:

FADS.

4.9.3.1 RS-232 Signal Description
In the following list:
DCD (O) - Data Carrier Detect

TX (O) - Transmit Data

DSR

RTS

CTS

NC

Figure 4.11: RS-232 serial port connector.

To assist user’s applications and to provide convenient communication channels with
both a terminal and a host computer, two identical RS232 ports are provided on the

Use is done with 9 pins, female D-type stack connector, configured to be directly (via a
flat cable) connected to a standard IBM-PC-like RS232 connector.

From this manual, we can see that the FADS RS-232 port definition is based on the EIA574
DB9 DCE female device connector definition.

148 Chapter 4

4.2.3 Serial I/O Example 2: Networking and Communications: IEEE 802.11

Wireless LAN

The IEEE 802.11 family of networking standards are serial wireless LAN standards and are
summarized in Table 4.1. These standards define the major components of a wireless LAN

system.

Table 4.1: 802.11 standards.

IEEE 802.11 Standard

Description

802.11-1999 Root Standard for
Information Technology—
Telecommunications and

Information Exchange between Systems—
Local and Metropolitan Area Network—
Specific Requirements—Part 11: Wireless
LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications

The 802.11 standard was the first attempt to define the way
wireless data from a network should be sent. The standard
defines operations and interfaces at the MAC (Media Access
Control) and PHY (physical interface) levels in a TCP/IP
network. There are three PHY layer interfaces defined (one
IR and two radio: Frequency-Hopping Spread Spectrum
[FHSS] and Direct Sequence Spread Spectrum [DSSS]), and
the three do not interoperate. Use CSMA/CA (carrier sense
multiple access with collision avoidance) as the basic medium
access scheme for link sharing, phase-shift keying (PSK) for
modulation.

802.11a-1999 “WiFi5” Amendment 1:
High-speed Physical Layer in the
5GHz band

Operates at radio frequencies between 5 GHz and 6 GHz

to prevent interference with many consumer devices. Uses
CSMA/CA as the basic medium access scheme for link
sharing. As opposed to PSK, it uses a modulation scheme
known as orthogonal frequency-division multiplexing (OFDM)
that provides data rates as high as 54 Mbps maximum.

802.11b-1999 “WiFi” Supplement to
802.11a-1999, Wireless LAN MAC and
PHY Specifications: Higher-speed Physical
Layer (PHY) extension in the 2.4 GHz band

Backward compatible with 802.11. 11Mbps speed,

one single PHY layer (DSSS), uses CSMA/CA as the basic
medium access scheme for link sharing and
complementarycode keying (CCK), which allows higher data
rates and is less susceptible to multipath-propagation
interference.

802.11b-1999/Cor1-2001 Amendment 2:
Higher-speed Physical Layer (PHY)
extension in the 2.4 GHz band—
Corrigendum 1

To correct deficiencies in the MIB definition of 802.11b.

802.11c¢ |IEEE Standard for Information
Technology—Telecommunications and
information exchange between systems—
Local area networks—Media access
control (MAC) bridges—Supplement for
support by IEEE 802.11

Designated in 1998 to add a subclass under 2.5 Support of
the Internal Sublayer Service by specific MAC Procedures

to cover bridge operation with IEEE 802.11 MACs. Allows the
use of 802.11 access points to bridge across networks within
relatively short distances from each other (i.e., where there
was a solid wall dividing a wired network).

Table 4.1: (continued)

IEEE 802.11 Standard

Description

802.11d-2001 Amendment to IEEE
802.11-1999 (ISO/IEC 8802-11),
Specification for Operation in Additional
Regulatory Domains

Internationalization—defines the physical layer requirements
(channelization, hopping patterns, new values for current MIB
attributes, and other requirements) to extend the operation
of 802.11 WLANSs to new regulatory domains (countries).

802.11e Amendment to STANDARD [for]
Information Technology-
Telecommunications and information
exchange between systems-Local and
metropolitan area networks-Specific
requirements-Part 11: Wireless LAN
Medium Access Control (MAC) and
Physical Layer (PHY) specifications:
Medium Access Method (MAC) Quality
of Service Enhancements

Enhance the 802.11 Medium Access Control (MAC) to
improve and manage quality of service (QoS), provide classes
of service and efficiency enhancements in the areas of the
Distributed Coordination Function (DCF) and Point
Coordination Function (PCF). Defining a series of extensions
to 802.11 networking to allow for QoS operation (i.e., to
allow for adaptation for streaming audio or video via a
preallocated dependable portion of the bandwidth.)

802.11f-2003 IEEE Recommended
Practice for Multi-Vendor Access Point
Interoperability via an Inter-Access Point
Protocol Across Distribution Systems
Supporting IEEE 802.11 Operation

Standard to enable handoffs (constant operation while the
mobile terminal is actually moving) to be done in such a
way as to work across access points from a number of
vendors. Includes recommended practices for an Inter-
Access Point Protocol (IAPP), which provides the necessary
capabilities to achieve multivendor Access Point
interoperability across a distribution system supporting IEEE
P802.11 Wireless LAN Links. This IAPP will be developed for
the following environment(s): (1) a distribution system
consisting of IEEE 802 LAN components supporting

an |ETF IP environment; (2) others as deemed appropriate.

802.11g-2003 Amendment 4: Further
Higher-Speed Physical Layer Extension
in the 2.4 GHz Baud

A higher-speed(s) PHY extension to 802.11b—offering wireless
transmission over relatively short distances at up to 54 Mbps
compared to the maximum 11 Mbps of the 802.11 standard
and operating in the 2.4 GHz range. Uses CSMA/CA as the
basic medium access scheme for link sharing.

802.11h-2001 Spectrum and Transmit
Power Management Extensions in the
5GHz band in Europe

Enhancing the 802.11 MAC standard and 802.11a High
Speed PHY in the 5 GHz Band supplement to the standard;

to add indoor and outdoor channel selection for 5 GHz
license exempt bands in Europe; and to enhance channel
energy measurement and reporting mechanisms to improve
spectrum and transmit power management (per CEPT and
subsequent EU committee or body ruling incorporating CEPT
Recommendation ERC 99/23).

Looking into the tradeoffs involved in creating reduced-power
transmission modes for networking in the 5 GHz space—
essentially allowing 802.11a to be used by handheld
computers and other devices with limited battery power
available to them. Also, examining the possibility of allowing
access points to reduce power to shape the geometry of a
wireless network and reduce interference outside the desired
influence of such a network.

Table 4.1: (continued)

IEEE 802.11 Standard

Description

802.11i Amendment to STANDARD
[for] Information Technology-
Telecommunications and information
exchange between systems-Local and
metropolitan area networks-Specific
requirements-Part 11: Wireless LAN
Medium Access Control (MAC) and
Physical Layer (PHY) specifications:
Medium Access Method (MAC) Security
Enhancements

Enhances the 802.11 MAC to enhance security and
authentication mechanisms and improve the PHY-level
security that is used on these networks.

802.11j Amendment to STANDARD
[for] Information Technology-
Telecommunications and information
exchange between systems-Local and
Metropolitan networks-Specific
requirements—Part 11: Wireless LAN
Medium Access Control (MAC) and
Physical Layer (PHY) specifications:
4.9-5GHz Operation in Japan

The scope of the project is to enhance the 802.11 standard
and amendments, to add channel selection for 4.9 GHz

and 5GHz in Japan to additionally conform to the Japanese
rules for radio operation, to obtain Japanese regulatory
approval by enhancing the current 802.11 MAC and 802.11a
PHY to additionally operate in newly available Japanese

4.9 GHz and 5 GHz bands.

802.11k Amendment to STANDARD
[for] Information Technology-
Telecommunications and information
exchange between systems-Local and
Metropolitan networks- Specific
requirements-Part 11: Wireless LAN
Medium Access Control (MAC) and
Physical Layer (PHY) specifications: Radio
Resource Measurement of Wireless LANs

This project will define Radio Resource Measurement
enhancements to provide interfaces to higher layers for radio
and network measurements.

802.11ma Standard for Information
Technology-Telecommunications and
information exchange between systems-
Local and Metropolitan networks-Specific
requirements-Part 11: Wireless LAN
Medium Access Control (MAC) and
Physical Layer (PHY) specifications-
Amendment x: Technical corrections

and clarifications

Incorporates accumulated maintenance changes (editorial
and technical corrections) into 802.11-1999, 2003 edition
(incorporating 802.11a-1999, 802.11b-1999, 802.11b-1999
corrigendum 1-2001, and 802.11d-2001).

802.11n Amendment to STANDARD
[for] Information Technology-
Telecommunications and information
exchange between systems-Local and
Metropolitan networks- Specific
requirements-Part 11: Wireless LAN
Medium Access Control (MAC) and
Physical Layer (PHY) specifications:
Enhancements for Higher Throughput

The scope of this project is to define an amendment that
shall define standard modifications to both the 802.11
physical layers (PHY) and the 802.11 Medium Access Control
Layer (MAC) so that modes of operation can be enabled that
are capable of much higher throughputs, with a maximum
throughput of at least 100 Mbps, as measured at the MAC
data service access point (SAP).

Embedded Board Buses and /O 151

The first step is to understand the main components of an 802.11 system, regardless of
whether these components are implemented in hardware or software. This is important
because different embedded architectures and boards implement 802.11 components differ-
ently. On most platforms today, 802.11 standards are made up of root components that are
implemented almost entirely in hardware. The hardware components can all be mapped to the
physical layer of the OSI model, as shown in Figure 4.12. Any software required to enable
802.11 functionality maps to the lower section of the OSI data-link layer but will not be dis-
cussed in this section.

Application
Presentation
Session
Transport
Network 8022...
; Data-Link
P g02.11 802.11 MAC
Physical | >
IR DS FH
v v v
Infrared (IR) Pulse Position Direct Sequence Spread Spectrum Frequency Hopping Spread Spectrum
Modulation. This PHY provides operating in the 2 400 - 2 483.5 MHz operating in the 2 400 - 2 483.5 MHz
1 Mbit/s with optional 2 Mbit/s. The band (depends on local regulations). This band (depends on local regulations). This
1 Mbit/s version uses Pulse Position PHY provides both 1 and 2 Mbit/s PHY provides for 1 Mbit/s (with 2 Mbit/s
Modulation with 16 positions operation. The 1 Mbit/s version uses optional) operation. The 1 Mbit/s version
(16-PPM) and the 2 Mbit/s version Differential Binary Phase Shift Keying uses 2 level Gaussian Frequency Shift
uses 4-PPM. (DBPSK) and the 2 Mbit/s version uses Keying (GFSK) modulation and the 2
Differential Quadrature Phase Shift Mbit/s version uses 4 level GFSK.

Keying (DQPSK).

Figure 4.12: OSI model.

Off-the-shelf wireless hardware modules supporting one or some combination of the 802.11
standards (i.e., 802.11a, 802.11b, 802.11g, etc.) have in many ways complicated the efforts to
commit to one wireless LAN standard. These modules also come in a wide variety of forms,
including embedded processor sets, PCMCIA, Compact Flash, and PCI formats. In general,
as shown in Figures 4.13a and b, embedded boards need to either integrate 802.11 functional-
ity as a slave controller or into the master chip or the board needs to support one of the stand-
ard connectors for the other forms (PCI, PCMCIA, Compact Flash, etc.). This means that
either (1) 802.11 chipset vendors can produce or port their PC Card firmware for an 802.11
embedded solution, which can be used for lower volume/more expensive devices or during
product development, or (2) the same vendor’s chipset on a standard PC card could be

placed on the embedded board, which can be used for devices that will be manufactured in
larger volumes.

On top of the 802.11 chipset integration, an embedded board design needs to take into consid-
eration wireless LAN antenna placement and signal transmission requirements. The designer

152 Chapter 4

PCI, PCMCIA, or
Compact Flash Card

Radio Hardware

Embedded Board

Diversity Antennas

jas

PRISM 3 miniPCI 802.11a, g, and b

Antenna
Select

Diversity Bandpass
Switch filter

[
Di
Transmit
Preamp Quadrature

BALUN LNA

irect Up/Down Converter

TR
Switch
TR Power|
Switch Amp

] _TxAGC

TXI

TXQ

Data

Clock

Up/Down 6w
Converter Pass
T T T T Filter
Divide
By Two
L ¢

Latch Enable

RX
RF

Gain
High/Low

Baseband

BBAGC
R T
A 1
s RXQ Processor/MAC

K D Host

VCO Loop 44 MHz
1SL3084 Filter Clock

Figure 4.13a: 802.11 sample hardware configurations with PCI card.

Y

ARM9 Based WiSoC for 802.11a, g, and b

1Y
-]

ZIF

oE

PA 1ISL3893
! Linux System
°
8 RFE
8 I
o uAP
S | 802.11 MVC
%i MAC/BB Dl 802.11a, b, g
I PCI 802.3|||802.3|||802.11 Baseband
PCI
=z
{IE
Optional 2nd Radio

Backbone Infrastructure

Figure 4.13b: 802.11 sample hardware configurations with SoC.

must ensure that there are no obstructions to prevent receiving and transmitting data. When
802.11 is not integrated into the master CPU, such as with the System-on-Chip (SoC) shown
in Figure 4.13b, the interface between the master CPU and the 802.11 board hardware also

needs to be designed.

Embedded Board Buses and I/O 153

4.2.4 Parallel 1/0

Components that transmit data in parallel are devices that can transfer data in multiple bits
simultaneously. Just as with serial I/O, parallel I/O hardware is also typically made up of some
combination of six main logical units, as introduced at the start of this chapter, except that the
port is a parallel port and the communication interface is a parallel interface.

Parallel interfaces manage the parallel data transmission and reception between the master
CPU and either the I/O device or its controller. They are responsible for decoding data bits
received over the pins of the parallel port (transmitted from the I/O device) and receiving data
being transmitted from the master CPU, then encoding these data bits onto the parallel port
pins.

They include reception and transmission buffers to store and manipulate the data being
transferred. In terms of parallel data transmission and reception schemes, like serial /O
transmission, they generally differ in terms of the direction in which data can be transmitted
and received as well as the actual process of transmitting/receiving data bits within the data
stream. In the case of direction of transmission, as with serial I/O, parallel I/O uses simplex,
half-duplex, or full-duplex modes. Also, as with serial I/O, parallel I/O devices can transmit
data asynchronously or synchronously. However, parallel I/O does have a greater capacity to
transmit data than serial I/O, because multiple bits can be transmitted or received simultane-
ously. Examples of board I/O that transfer and receive data in parallel include IEEE 1284 con-
trollers (for printer/display I/O devices—see Example 3), CRT ports, and SCSI (for storage
I/0 devices). A protocol that can potentially support both parallel and serial I/O is Ethernet,
presented in Example 4.

4.2.5 Parallel /O Example 3: “Parallel” Output and Graphics I/O

Technically, the models and images that are created, stored, and manipulated in an embedded
system are the graphics. There are typically three logical components (engines) of I/O graph-
ics on an embedded board, as shown in Figure 4.14:

Embedded System

ettt e et oo Output 1/0 e
Device

Input I/O
Device

Figure 4.14: Graphical design engines.

154 Chapter 4

e The geometric engine, which is responsible for defining what an object is. This
includes implementing color models, an object’s physical geometry, material and
lighting properties, and so on.

e The rendering engine, which is responsible for capturing the description of objects.
This includes providing functionality in support of geometric transformations, projec-
tions, drawing, mapping, shading, illumination, and so on.

e The raster and display engine, which is responsible for physically displaying the
object. It is in this engine that the output I/O hardware comes into play.

An embedded system can output graphics via softcopy (video) or hardcopy (on paper) means.
The contents of the display pipeline differ according to whether the output I/O device outputs
hard or soft graphics, so the display engine differs accordingly, as shown in Figures 4.15a and b.

Display Engine

Parallel Display Interface
Controller

AP or >

Integrated Master CPU

Memory

(Frame Buffer) :

Video
Controlle

. Display
i Pipeline

Parallel Interface

CRT

LCD

Display Engine

Parallel Display Interface
Controller

Printer

or
Integrated Master CPU
Parallel Interface

Parallel

Controller

Port

Display Pipeline

Printer

A4

Figure 4.15b: Display engine of hardcopy graphics example.

Scanner

The actual parallel port configuration differs from standard to standard in terms of the number
of signals and the required cable. For example, on Net Silicon’s NET+ARMS50 embedded

Embedded Board Buses and I/O 155

board (see Figure 4.16), the master processor (an ARM7-based architecture) has an integrated
IEEE 1284 interface, a configurable MIC controller integrated in the master processor, to
transmit parallel I/O over four on-board parallel ports.

- -~

__________ »/ P10 50Pins Y\

/ .
I | ENER, \ 8 4/ 8 J(8 PHY INT. (CO)
|IEEE1284

|
| PortA [[PortB [[PortC |

\ B NET+20M
1 ¥ + -
\ / MIC Port § Ports B & C,
N 3.3V GPIO D b “Pick Any 8" 18
N /) <oPoF> fg|NeTeom— o] Ml
N |
~~__ 4077 GPIG S | available MAC
T [GPIH > @@
CAS1 - CS1 . - RST-
MIC = Multi Interface Controller —

g%tél’ . RESET- _ANCD
on Ines

ADDR/CONTL NET+20M/50
BUF BGA/PQFP 5
BCLK DEBUG [————
AllNET+ARM XTAL2 —L 1

Signals
9 XTALY T
2.5V H CORE, PLL I/0 3.3V

Figure 4.16: NET+ARMS50 embedded board parallel 1/0O.

The IEEE 1284 specification defines a 40-signal port, but on the Net+ARMS50 board, data and
control signals are multiplexed to minimize the master processor’s pin count. Aside from eight
data signals DATA[8:1] (D, — D), IEEE 1284 control signals include:

e PDIR, which is used for bidirectional modes and defines the direction of the external
data transceiver. Its state is directly controlled by the BIDIR bit in the IEEE 1284
Control register (0 state, data is driven from the external transceiver toward 1285, the
cable, and in the 1 state, data is received from the cable).

e PIO, which is controlled by firmware. Its state is directly controlled by the PIO bit in
the IEEE 1284 Control register.

e LOOPBACK, which configures the port in external loopback mode and can be used to
control the mux line in the external FCT646 devices (set to 1, the FCT646 transceivers
drive inbound data from the input latch and not the real-time cable interface). Its state
is directly controlled by the LOOP bit in the IEEE 1284 Control register. The LOOP
strobe signal is responsible for writing outbound data into the inbound latch (complet-
ing the loop back path). The LOOP strobe signal is an inverted copy of the STROBE*
signal.

156 Chapter 4

e STROBE* (nSTROBE), AUTOFD* (nAUTOFEED), INIT* (nINIT), HSELECT* (nSE-
LECTIN), *ACK (nACK), BUSY, PE, PSELECT (SELECT), *FAULT (nER-ROR), ...

4.2.6 Parallel and Serial I/O Example 4: Networking and Communications—Ethernet

One of the most widely implemented LAN protocols is Ethernet, which is primarily based

on the IEEE 802.3 family of standards. These standards define the major components of any
Ethernet system. Thus, to fully understand an Ethernet system design, you first need to under-
stand the IEEE specifications. (Remember, this is not a book about Ethernet, and there is a lot
more involved than is covered here. This example is about understanding a networking proto-
col and then being able to understand the design of a system based on a networking protocol
such as Ethernet.)

The first step is understanding the main components of an Ethernet system, regardless of
whether these components are implemented in hardware or software. This is important since
different embedded architectures and boards implement Ethernet components differently. On
most platforms, however, Ethernet is implemented almost entirely in hardware.

The hardware components can all be mapped to the physical layer of the OSI model. The
firmware (software) required to enable Ethernet functionality maps to the lower section of the
OSI data-link layer but will not be discussed in this section.

Several Ethernet system models are described in the IEEE 802.3 specification, so let’s look at a
few to get a clear understanding of some of the most common Ethernet hardware components.

Ethernet devices are connected to a network via Ethernet cables: thick coax (coaxial), thin
coax, twisted-pair, or fiber optic cables. These cables are commonly referred to by their IEEE
names. These names are made up of three components: the data transmission rate, the type of
signaling used, and either the cable type or cable length.

Application

Presentation

Session

Transport

Network

g e e o Data-Link sreeeeeeeseeeeessenanens ey
i Ethernet :

Physical

Figure 4.17: OSI model.

Embedded Board Buses and I/O 157

For example, a 10Base-T cable is an Ethernet cable that handles a data transmission rate of
10 Mbps (million bits per second), will only carry Ethernet signals (baseband signaling), and
is a twisted-pair cable. A 100Base-F cable is an Ethernet cable that handles a data transmis-
sion rate of 100 Mbps, supports baseband signaling, and is a fiber optic cable. Thick or thin
coax cables transmit at speeds of 10 Mbps and support baseband signaling but differ in the
length of maximum segments cut for these cables (500 meters for thick coax, 200 meters for
thin coax). Thus, these thick coax cables are called 10Base-5 (short for 500), and thin coax
cables are called 10Base-2 (short for 200).

The Ethernet cable must then be connected to the embedded device. The type of cable, along
with the board I/O (communication interface, communication port, etc.), determines whether
the Ethernet I/O transmission is serial or parallel. The Medium Dependent Interface (MDI)

is the network port on the board into which the Ethernet cable plugs. Different MDIs exist for
the different types of Ethernet cables. For example, a 10Base-T cable has a RJ-45 jack as the
MDI. In the system model of Figure 4.18, the MDI is an integrated part of the transceiver.

1 Mbps and 10 Mbps Ethernet System Model

Embedded Device

Master or Slave
Processor

|
|
| z
| >
_____ 3
I ! =
g
i MDI | PMA | [A, | g
i I | : (@]
| 9
r 2
| S
|
|

Ethernet Cable

Figure 4.18: Ethernet components diagram.

A transceiver is the physical device that receives and transmits the data bits; in this case it is

the Medium Attachment Unit (MAU). The MAU contains not only the MDI but the Physical
Medium Attachment (PMA) component as well. It is the PMA which “contains the functions for
transmission, reception, and” depending on the transceiver, “collision detection, clock recovery
and skew alignment” (p. 25, IEEE 802.3 Spec). Basically, the PMA serializes (breaks down into
a bit stream) code groups received for transmission over the transmission medium or deserializes
bits received from the transmission medium and converts these bits into code groups.

The transceiver is then connected to an Attachment Unit Interface (AUI), which carries the
encoded signals between an MAU and the Ethernet interface in a processor. Specifically,

158 Chapter 4

the AUI is defined for up to 10 Mbps Ethernet devices and specifies the connection between
the MAU and the Physical Layer Signaling (PLS) sublayer (signal characteristics, connectors,
cable length, etc.).

The Ethernet interface can exist on a master or slave processor and contains the remaining
Ethernet hardware and software components. The Physical Layer Signaling (PLS) component
monitors the transmission medium and provides a carrier sense signal to the Media Access
Control (MAC) component. It is the MAC that initiates the transmission of data, so it checks
the carrier signal before initiating a transmission, to avoid contention with other data over the
transmission medium.

Let’s start by looking at an embedded board for an example of this type of Ethernet system.

4.2.7 Example 1: Motorola/Freescale MPC823 FADS Board Ethernet
System Model

Section 4.9.1 of The Motorola/Freescale 8xxFADS User’s Manual (Rev 1) details the Ethernet
system on the Motorola/Freescale FADS board:

“4.9.1 Ethernet Port

The MPC8xxFADS has an Ethernet port with a 10-Base-T interface. The communication
port on which this resides is determined according to the MPC8xx type whose routing is
on the daughter board. The Ethernet port uses an MC68160 EEST 10 Base-T transceiver.

You can also use the Ethernet SCC pins, which are on the expansion connectors of the
daughter board and on the communication port expansion connector (P8) of the moth-
erboard. The Ethernet transceiver can be disabled or enabled at any time by writing a 1
or a 0 to the EthEn bit in the BCSR1.”

From this information, we know that the board has an RJ-45 jack as the MDI, and the
MC68160 enhanced Ethernet serial transceiver (EEST) is the MAU. The second paragraph, as
well as Chapter 28 of the PowerPC MPC823 User’s Manual, tells us more about the AUI and
the Ethernet interface on the MPC823 processor.

On the MPCR823, a seven-wire interface acts as the AUI. The SCC2 is the Ethernet interface
and “performs the full set of IEEE 802.3/Ethernet CSMA/CD media access control and chan-
nel interface functions.” (See MPC823 PowerPC User’s Manual, p. 16-312.)

LAN devices that are able to transmit and receive data at a much higher rate than 10 Mbps
implement a different combination of Ethernet components. The IEEE 802.3u Fast Ethernet
(100 Mbps data rate) and the IEEE 802.3z Gigabit Ethernet (1000 Mbps data rate) systems

Embedded Board Buses and I/O 159

PPC 823
EEST MC68160
SCC2
™ K TXD
TENA < TENA (RTS)
RJ-45 N
TCLK] TCLK(CLKx)
Rx D RxD
RENA :> RENA (CD) ¢}—— PLS/Carrier
Sense Signal is
N
Ethernet Cable RCLK | RCLK (CLK) logical OR of
CLSN > cLsN CcTs) 4—— RENA and CLSN
Loor Parallel 1/0

Figure 4.19: MPC823 Ethernet diagram.

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

evolved from the original Ethernet system model (described in the previous section) and are
based on the system model in Figure 4.20.

10 Mbps, 100 Mbps and 1000 Mbps Ethernet System Model

Embedded Device Master or Slave
Processor
Ethernet
Interface
PHY J§>
2 o
, =| e8|
Tl Tl O =
X DI =29 5| 52 9
o> S| § 8 e}
= s = s
> S
Ethernet Cable

Figure 4.20: Ethernet diagram.

The MDI in this system is connected to the transceiver, not a part of the transceiver (as in the
previous system model). The Physical Layer Device (PHY) transceiver in this system con-
tains three components: the PMA (same as on the MAU transceiver in the 1/10 Mbps system
model), the Physical Coding Sub layer (PCS), and the Physical Medium Dependent (PMD).

160 Chapter 4

The PMD is the interface between the PMA and the transmission medium (through the MDI).
The PMD is responsible for receiving serialized bits from the PMD and converting it to the
appropriate signals for the transmission medium (optical signals for a fiber optic, etc.). When
transmitting to the PMA, the PCS is responsible for encoding the data to be transmitted into the
appropriate code group. When receiving the code groups from the PMA, the PCS decodes the
code groups into the data format that can be understood and processed by upper Ethernet layers.

The Media Independent Interface (MII) and the Gigabit Media Independent Interface (GMII)
are similar in principle to the AUI, except they carry signals (transparently) between the trans-
ceiver and the Reconciliation Sub layer (RS). Furthermore, the MII supports a LAN data rate
of up to 100 Mbps, while GMII (an extension of MII) supports data rates of up to 1000 Mps.
Finally, the RS maps PLS transmission media signals to two status signals (carrier presence
and collision detection) and provides them to the Ethernet interface.

4.2.8 Example 2: Net Silicon ARM7 (6127001) Development Board Ethernet
System Model

The Net+Works 6127001 Development Board Jumper and Component Guide from NetSilicon
has an Ethernet interface section on their ARM based reference board, and from this we can
start to understand the Ethernet system on this platform (see Figure 4.21).

“Ethernet Interface

The 10/100 version of the 3V NET+Works Hardware Development Board provides a
full-duplex 10/100 Mbit Ethernet Interface using the Enable 3V PHY chip. The Enable 3V
PHY interfaces to the NET+ARM chip using the standard Ml interface.

The Enable 3V PHY LEDL (link indicator) signal is connected to the NET+ARM PORTC6
GPIO signal. The PORT6 input can be used to determine the current Ethernet link status
(The Mll interface can also be used to determine the current Ethernet link status)”

ARM7

Enable 3V Phy

RJ-45

Ml

AN
NS

3|NPON OVIN
8|NPON 343

Ethernet Cable

Figure 4.21: Net+ARM Ethernet block diagram.

Embedded Board Buses and I/O 161

From this information we can determine that the board has an RJ-45 jack as the MDI, and the
Enable 3V PHY is the MAU. Section 5: “Ethernet Controller Interface” of the NET+ Works
for NET+ARM Hardware Reference Guide tells us that the ARM7-based ASIC integrates

an Ethernet controller, and that the Ethernet Interface is actually composed of two parts: the
Ethernet Front End (EFE) and the Media Access Control (MAC) modules. Finally, Section 1.3
of this manual tells us the Reconciliation Layer (RS) is integrated into the Media Independent
Interface (MII).

4.2.9 Example 3: Adastra Neptune x86 Board Ethernet System Model

While both the ARM and PowerPC platforms integrate the Ethernet interface into the main
processor (see Figure 4.22), this x86 platform has a separate slave processor for this function-
ality. According to the Neptune User’s Manual Rev A.2, the Ethernet controller the (“MAC
Am79C791 10/100 Controller”) connects to two different transceivers, with each connected to
either an AUI or MII for supporting various transmission media.

AUI to10Base-2/5
Transceiver

Ethernet /I—I\
12-pin 10Base-2/5AUl
Header \I l/

10Base-2/5 “MAC” Am79C971 /]
Ethernet Cable 10/100 Network

PCI
Controller \] >

Enable 3V Phy

RJ-45 / |—,M” N\

10/100Base-T
Ethernet Cable

Figure 4.22: x86 Ethernet diagram.

4.3 Interfacing the I/O Components

As discussed at the start of this chapter, I/O hardware is made up of all or some combination
of integrated master processor 1/O, I/O controllers, a communications interface, a communica-
tion port, I/O buses, and a transmission medium (see Figure 4.23).

All these components are interfaced (connected) and communication mechanisms imple-
mented via hardware, software, or both to allow for successful integration and function.

162 Chapter 4

. 1/O Devices E

Communication port E |

E Embedded Board H ! . !
: : \Transmission| | i
E Memory i Video ¢ Parallel ' medium | | !
' Integrated master CPU ' (FrameBuffer) : : Controller { & Port ' | !
: Parallel Interface : ; i H H ' |
: : ; - | LcD :
E & : E i
il e iiiiceeil. s oot |

: /O bus
The master processor
integrated I/O and

communication interface

Figure 4.23: Sample 1/O subsystem.

4.3.1 Interfacing the I/O Device with the Embedded Board

For off-board 1/0 devices, such as keyboards, mice, LCDs, printers, and so on, a transmission
medium is used to interconnect the I/O device to an embedded board via a communication port.
Aside from the I/O schemes implemented on the board (serial versus parallel), whether the
medium is wireless (Figure 4.24b) or wired (Figure 4.24a) also impacts the overall scheme used
to interface the I/O device to the embedded board.

As shown in Figure 4.24a, with a wired transmission medium between the 1/O device and
embedded board, it is just a matter of plugging in a cable, with the right connector head,

to the embedded board. This cable then transmits data over its internal wires. Given an I/O
device transmitting data over a wireless medium, such as the remote control in Figure 4.24b,
understanding how this interfaces to the embedded board means understanding the nature of
infrared wireless communication, since there are no separate ports for transmitting data versus

Embedded Board \

Transmission Medium

Received 4 QO (Q 6 DCE Ready

Line Signal Detect D J i
Transmitted Data 2 O (7 Clearto Send .-.- Received Line Signal
— . Detector
Received Data 3 O O 8 Request to Send .-.- Serial Cable ——————— Transmit Data
DTE Ready 4 9 Ring Indicator D) B e
v+00 D)
Signal Ground 5 () D]
D

... Communication Port
(Serial Port)

Figure 4.24a: Wired transmission medium. b: Wireless transmission medium.

Embedded Board Buses and 1/0O 163

Embedded Board

l Infrared (IR) Wireless Transmission Medium

A\

Communication Port
.................. (IR Transmitter)

/O Device
[Remote Control]

Figure 4.24b: Wireless transmission medium.

control signals. Essentially, the remote control emits electromagnetic waves to be intercepted
by the IR receiver on the embedded board.

The communication port would then be interfaced to an I/O controller, a communication
interface controller, or the master processor (with an integrated communication interface) via
an 1/0 bus on the embedded board (see Figure 4.25). An I/O bus is essentially a collection of
wires transmitting the data.

Embedded Board

[! __Received Line Signal Detect __
— Transmit Data —

Received Line
Signal Detect
Transmit Data

1

1

| Interface €
! Controller !

Communication f«-
Interface

Master CPU

Figure 4.25: Interfacing communication port to other board 1/0.

www.newnespress.com

164

Chapter 4

In short, an I/O device can be connected directly to the master processor via I/0 ports (proc-
essor pins) if the I/O devices are located on the board, or it can be connected indirectly using
a communication interface integrated into the master processor or a separate IC on the board
and the communication port. The communication interface itself is what is either connected
directly to the I/O device or the device’s I/O controller. For off-board I/0 devices, the relative
board I/O components are interconnected via I/O buses.

4.3.2 Interfacing an I/O Controller and the Master CPU

In a subsystem that contains an I/O controller to manage the I/O device, the design of the
interface between the I/O controller and master CPU—yvia a communications interface—is
based on four requirements:

An ability of the master CPU to initialize and monitor the I/O controller. 1/O control-
lers can typically be configured via control registers and monitored via status registers.
These registers are all located on the I/O controller. Control registers are data registers
that the master processor can modify to configure the I/O controller. Status registers
are read-only registers in which the master processor can get information as to the
state of the I/O controller. The master CPU uses these status and control registers to
communicate and/or control attached I/O devices via the I/O controller.

A way for the master processor to request I/0. The most common mechanisms used
by the master processor to request I/O via the I/O controller are special I/0 instruc-
tions (I/0 mapped) in the ISA and memory-mapped 1/0, in which the I/O controller
registers have reserved spaces in main memory.

A way for the I/0 device to contact the master CPU. 1/O controllers that have the abil-
ity to contact the master processor via an interrupt are referred to as interrupt driven
I/0. Generally, an I/O device initiates an asynchronous interrupt requesting signaling
to indicate (for example) control and status registers can be read from or written to.
The master CPU then uses its interrupt scheme to determine when an interrupt will be
discovered.

Some mechanism for both to exchange data. This refers to how data is actually
exchanged between the I/O controller and the master processor. In a programmed
transfer, the master processor receives data from the I/O controller into its registers,
and the CPU then transmits this data to memory. For memory-mapped I/O schemes,
DMA (direct memory access) circuitry can be used to bypass the master CPU entirely.
DMA has the ability to manage data transmissions or receptions directly to and from
main memory and an I/O device. On some systems, DMA is integrated into the mas-
ter processor, and on others there is a separate DMA controller. Essentially, DMA
requests control of the bus from the master processor.

Embedded Board Buses and /O 165

4.4 1/0O and Performance

I/0O performance is one of the most important issues of an embedded design. I/O can nega-
tively impact performance by bottlenecking the entire system. To understand the type of per-
formance hurdles I/O must overcome, it is important to understand that, with the wide variety
of I/0O devices, each device will have its own unique qualities. Thus, in a proper design, the
engineer will have taken these unique qualities on a case-by-case basis into consideration.
Some of the most important shared features of I/O that can negatively impact board perform-
ance include:

e The data rates of the I/0 devices. 1/0 devices on one board can vary in data rates from
a handful of characters per second with a keyboard or a mouse to devices that can
transmit in Mbytes per second (networking, tape, disk).

e The speed of the master processor. Master processors can have clocks rates anywhere
from tens of MHz to hundreds of MHz. Given an I/O device with an extremely slow
data rate, a master CPU could have executed thousands of times more data in the time
period that the I/O needs to process a handful of bits of data. With extremely fast I/O,
a master processor would not even be able to process anything before the I/O device is
ready to move forward.

e How to synchronize the speed of the master processor to the speeds of I/0. Given the
extreme ranges of performance, a realistic scheme must be implemented that allows
for either the I/O or master processor to process data successfully regardless of how
different their speeds. Otherwise, with an I/O device processing data much slower
than the master processor transmits, for instance, data would be lost by the I/O device.
If the device is not ready, it could hang the entire system if there is no mechanism to
handle this situation.

e How I/O and the master processor communicate. This includes whether there is an
intermediate dedicated I/O controller between the master CPU and 1/O device that
manages 1/O for the master processor, thus freeing up the CPU to process data more
efficiently. Relative to an I/O controller, it becomes a question whether the communi-
cation scheme is interrupt driven, polled, or memory mapped (with dedicated DMA
to, again, free up the master CPU). If interrupt-driven, for example, can I/O devices
interrupt other I/O, or would devices on the queue have to wait until previous devices
finished their turn, no matter how slow.

To improve I/O performance and prevent bottlenecks, board designers need to examine the
various I/O and master processor communication schemes to ensure that every device can be
managed successfully via one of the available schemes. For example, to synchronize slower
I/0 devices and the master CPU, status flags or interrupts can be made available for all ICs so

166 Chapter 4

that they can communicate their status to each other when processing data. Another example
occurs when I/0 devices are faster than the master CPU. In this case, some type of interface
(i.e., DMA) that allows these devices to bypass the master processor altogether could be an
alternative.

The most common units measuring performance relative to I/O include:

e Throughput of the various I/O components (the maximum amount of data per unit
time that can be processed, in bytes per second). This value can vary for different
components. The components with the lowest throughput are what drives the perform-
ance of the whole system.

e The execution time of an I/O component. The amount of time it takes to process all of
the data it is provided with.

e The response time or delay time of an I/O component. It is the amount of time
between a request to process data and the time the actual component begins
processing.

To accurately determine the type of performance to measure, the benchmark has to match
how the I/O functions within the system. If the board will be accessing and processing several
larger stored data files, benchmarks will be needed to measure the throughput between mem-
ory and secondary/tertiary storage medium. If the access is to files that are very small, then
response time is the critical performance measure, since execution times would be very fast
for small files, and the I/O rate would depend on the number of storage accesses per second,
including delays. In the end, the performance measured would need to reflect how the system
would actually be used in order for any benchmark to be of use.

4.5 Board Buses

All the other major components that make up an embedded board—the master processor, I/O
components, and memory—are interconnected via buses on the embedded board. As defined
earlier, a bus is simply a collection of wires carrying various data signals, addresses, and
control signals (clock signals, requests, acknowledgements, data type, etc.) between all the
other major components on the embedded board, which include the I/O subsystems, memory
subsystem, and the master processor. On embedded boards, at least one bus interconnects the
other major components in the system (see Figure 4.26).

On more complex boards, multiple buses can be integrated on one board (see Figure 4.27). For
embedded boards with several buses connecting components that need to inter-communicate,
bridges on the board connect the various buses and carry information from one bus to another.
In Figure 4.27, the PowerManna PCI bridge is one such example. A bridge can automatically
provide a transparent mapping of address information when data is transferred from one bus

Embedded Board Buses and I/O

167

Video Processor [4—

Audio Processor

NVM

.

2,
"CBUS | \137273

Figure 4.26: General bus structure.

| Cache | | Cache |

&

&

MPC620

MPC620

!

&

Data <

Address

R

P&
Tt

Dispatcher

A

A

4

Address

Data Path Switch

g

<=

g |

r |

Memory

Link

SYS I/0

b

PowerMANNA
PCI Bridge

&

<

>

PCI Subsystem

Figure 4.27: MPC620 board with bridge.

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

to another, implement different control signal requirements for various buses—acknowledg-
ment cycles, for example—as well as modify the data being transmitted if any transfer proto-
cols differ bus to bus. For instance, if the byte ordering differs, the bridge can handle the byte

swapping.

Board buses typically fall under one of three main categories: system buses, backplane buses
or I/0 buses. System buses (also referred to as “main,” “local,” or “processor-memory” buses)

interconnect external main memory and cache to the master CPU and/or any bridges to the

other buses. System buses are typically shorter, higher-speed custom buses. Backplane buses

168 Chapter 4

are also typically faster buses that interconnect memory, the master processor, and I/O, all on
one bus. I/0 buses, also referred to as “expansion,” “external,” or “host” buses, in effect act as
extensions of the system bus to connect the remaining components to the master CPU, to each
other, to the system bus via a bridge, and/or to the embedded system itself, via an I/O com-
munication port. I/O buses are typically standardized buses that can be either shorter, higher-

speed buses such as PCI and USB, or longer, slower buses such as SCSI.

The major difference between system buses and I/O buses is the possible presence of IRQ
(interrupt request) control signals on an I/O bus. There are a variety of ways I/O and the mas-
ter processor can communicate, and interrupts are one of the most common methods. An IRQ
line allows for I/O devices on a bus to indicate to the master processor that an event has taken
place or an operation has been completed by a signal on that IRQ bus line. Different I/O buses
can have different impacts on interrupt schemes. An ISA bus, for example, requires that each
card that generates interrupts must be assigned its own unique IRQ value (via setting switches
or jumpers on the card). The PCI bus, on the other hand, allows two or more I/O cards to share
the same IRQ value.

Within each bus category, buses can be further divided into whether the bus is expandable or
nonexpandable. An expandable bus (PCMCIA, PCI, IDE, SCSI, USB, and so on) is one in
which additional components can be plugged into the board on the fly, whereas a nonexpandable
bus (DIB, VME, 12C are examples) is one in which additional components cannot be simply
plugged into the board and then communicate over that bus to the other components.

While systems implementing expandable buses are more flexible because components

can be added ad-hoc to the bus and work “out of the box,” expandable buses tend to be

more expensive to implement. If the board is not initially designed with all of the possible
types of components that could be added in the future in mind, performance can be negatively
impacted by the addition of too many “draining” or poorly designed components onto the
expandable bus.

4.6 Bus Arbitration and Timing

Associated with every bus is some type of protocol that defines how devices gain access to the
bus (arbitration), the rules attached devices must follow to communicate over the bus (hand-
shaking), and the signals associated with the various bus lines.

Board devices obtain access to a bus using a bus arbitration scheme. Bus arbitration is based
upon devices being classified as either master devices (devices that can initiate a bus transac-
tion) or slave devices (devices which can only gain access to a bus in response to a master
device’s request). The simplest arbitration scheme is for only one device on the board—the
master processor—to be allowed to be master, while all other components are slave devices. In
this case, no arbitration is necessary when there can only be one master.

Embedded Board Buses and I/O 169

For buses that allow for multiple masters, some have an arbitrator (separate hardware cir-
cuitry) that determines under what circumstances a master gets control of the bus. There are
several bus arbitration schemes used for embedded buses, the most common being dynamic
central parallel, centralized serial (daisy-chain), and distributed self-selection.

Dynamic central parallel arbitration (shown in Figure 4.28a) is a scheme in which the arbi-
trator is centrally located. All bus masters connect to the central arbitrator. In this scheme,
masters are then granted access to the bus via a FIFO (first in, first out—see Figure 4.28b) or
priority-based system (see Figure 4.28c). The FIFO algorithm implements some type of FIFO

Device Device Device
0 1 [N N) N
[I |
busy
k7] k7 17
2 c o IS < o
o o | |8 o >
[0) ()] [0 (@] ()] [0}
< o o
—
arb

Figure 4.28a: Dynamic central parallel arbitration.

Bus | et Arbitrator

Figure 4.28b: FIFO-based arbitration.

Master 3 T .

o / e
= preemption

Master 2 : P P

M-

Master 2

Priority

LOW

Time

Figure 4.28c: Priority-based arbitration.

170 Chapter 4

queue that stores a list of master devices ready to use the bus in the order of bus requests.
Master devices are added at the end of the queue and are allowed access to the bus from the
start of the queue. One main drawback is the possibility of the arbitrator not intervening if a
single master at the front of the queue maintains control of the bus, never completing and not
allowing other masters to access the bus.

The priority arbitration scheme differentiates between masters based upon their relative
importance to each other and the system. Basically, every master device is assigned a priority,
which acts as an indicator of order of precedence within the system. If the arbitrator imple-
ments a preemption priority-based scheme, the master with the highest priority always can
preempt lower priority master devices when they want access to the bus, meaning a master
currently accessing the bus can be forced to relinquish it by the arbitrator if a higher priority
master wants the bus. Figure 4.28c shows three master devices (1, 2, 3 where master 1 is the
lowest priority device and master 3 is the highest); master 3 preempts master 2, and master 2
preempts master 1 for the bus.

Central-serialized arbitration, also referred to as daisy-chain arbitration, is a scheme in which
the arbitrator is connected to all masters, and the masters are connected in serial. Regardless of
which master makes the request for the bus, the first master in the chain is granted the bus and
passes the “bus grant” on to the next master in the chain if/when the bus is no longer needed
(see Figure 4.29).

+5
Device Device Device +5
grant 0 1 eoo N
| | |
arb _ release
request

Figure 4.29: Centralized serial/daisy-chain arbitration.

There are also distributed arbitration schemes, which means there is no central arbitrator and no
additional circuitry, as shown in Figure 4.30. In these schemes, masters arbitrate themselves by
trading priority information to determine if a higher-priority master is making a request for the
bus or even by removing all arbitration lines and waiting to see if there is a collision on the bus,
which means that the bus is busy with more than one master trying to use it.

Again, depending on the bus, bus arbitrators can grant a bus to a master atomically (until that
master is finished with its transmission) or allow for splif transmissions, where the arbitrator
can preempt devices in the middle of transactions, switching between masters to allow other
masters to have bus access.

Embedded Board Buses and I/O 171

Device Device Device
0 1 [3 N] N

[| busy |

Arbitration lines removed/ // request
collision detection based bus 7/ lines

Figure 4.30: Distributed arbitration via self-selection.

Once a master device is granted the bus, only two devices—a master and another device in
slave mode—communicate over that bus at any given time. There are only two types of trans-
actions that a bus device can do—READ (receive) and/or WRITE (transmit). These transac-
tions can take place either between two processors (a master and I/O controller, for example)
or processor and memory (a master and memory, for example). Within each type of transac-
tion, whether READ or WRITE, there can also be several specific rules that each device needs
to follow in order to complete a transaction. These rules can vary widely between the types of
devices communicating, as well as from bus to bus. These sets of rules, commonly referred to
as the bus handshake, form the basis of any bus protocol.

The basis of any bus handshake is ultimately determined by a bus’s timing scheme. Buses are
based upon one or some combination of synchronous or asynchronous bus timing schemes,
which allow for components attached to the bus to synchronize their transmissions. A synchro-
nous bus (such as that shown in Figure 4.31) includes a clock signal among the other signals it
transmits, such as data, address and other control information. Components using a synchro-
nous bus all are run at the same clock rate as the bus and (depending on the bus) data is
transmitted either on the rising edge or falling edge of a clock cycle. In order for this scheme
to work, components either must be in rather close proximity for a faster clock rate, or the
clock rate must be slowed for a longer bus. A bus that is too long with a clock rate that is too
fast (or even too many components attached to the bus) will cause a skew in the synchroniza-
tion of transmissions, because transmissions in such systems won’t be in sync with the clock.
In short, this means that faster buses typically use a synchronous bus timing scheme.

An asynchronous bus, such as the one shown in Figure 4.32, transmits no clock signal,

but transmits other (non-clock based) “handshaking” signals instead, such as request and
acknowledgment signals. Although the asynchronous scheme is more complex for devices
having to coordinate request commands, reply commands, and so on, an asynchronous bus has
no problem with the length of the bus or a larger number of components communicating over
the bus, because a clock is not the basis for synchronizing communication. An asynchronous
bus, however, does need some other “synchronizer” to manage the exchange of information,
and to interlock the communication.

172 Chapter 4

SDA SCL
MICRO- I B - ,
CONTROLLER Carries Clock Signal
PCB83C528
| PLL
SYNTHESIZER
| TSA5512
v
NON-VOLATILE
MEMORY
PCF8582E [
| ws coLour
DECODER
| TDA9160A

STEREO/DUAL
SOUND
DECODER

TDA9840 | I
T

PICTURE

SIGNAL

| MPROVEMENT

TDA4670
HI-FI AUDIO
PROCESSOR
TDA9860 [}
a
VIDEO
PROCESSOR
| TDA4685
T

Figure 4.31: 12C bus with SCL clock.

The two most basic protocols that start any bus handshaking are the master indicating or
requesting a transaction (a READ or WRITE) and the slave responding to the transaction
indication or request (for example, an acknowledgment/ACK or enquiry/ENQ). The basis of
these two protocols are control signals transmitted either via a dedicated control bus line or
over a data line. Whether it’s a request for data at a memory location, or the value of an I/O
controller’s control or status registers, if the slave responds in the affirmative to the master
device’s transaction request, then either an address of the data involved in the transaction is

Embedded Board Buses and I/O 173

The SCSI specification defines 50 bus signals, half of which are tied to
ground. The 18 SCSI bus signals that are relevant to understanding SCSI
transactions are shown below. Nine of these signals are used to initiate
and control transactions, and nine are used for data transfer (8 data bits
plus a parity bit).

Signal | Name Description

Local bus
-to- /BSY | Busy Indicates that the bus is in use.
SCSI Bus ’ ISEL Select The initiator uses this signal to select a target.

Bridge ,* /C/D Control/Data The target uses this signal to indicate whether the information being transferred is
,'2 . control information (signal asserted) or data (signal negated).
SCsl bus/ o gl-’ghnd ort N0 Input/Output The target uses this signal to specify the direction of the data movement with re-
IDE bus p p spect to the initiator. When the signal is asserted, data flows to the initiator; when

K negated, data flows to the target.
128 Kbits
/MSG | Message This signal is used by the target during the message phase.
(Other 1 CGI:S)ORI\(A)QA) /REQ Request The target uses this signal to start a request/acknowledge handshake.
/ACK Acknowledge This signal is used by the initiator to end a request/acknowledge handshake.

External fi High-densit
;2 r:ard d?'R/%)j %torage Y /ATN | Attention The initiator uses this signal to inform the target that the initiator has a message

scanner, etc input device ready. The target retrieves the message, at its convenience, by transitioning to a
— message-out bus phase.

/RST Reset This signal is used to clear all devices and operations from the bus, and force the
bus into the bus free phase. The Macintosh computer asserts this signal at startup.
SCSI peripheral devices should never assert this signal.

/DBO- Data Eight data signals, numbered 0 to 7, and the parity signal. Macintosh computers
/DB7, generate proper SCSI parity, but the original SCSI Manager does not detect parity
/DBP errors in SCSI transactions.

Figure 4.32: SCSI bus.

exchanged via a dedicated address bus line or data line, or this address is transmitted as part
of the same transmission as the initial transaction request. If the address is valid, then a data
exchange takes place over a data line (plus or minus a variety of acknowledgments over other
lines or multiplexed into the same stream). Again, note that handshaking protocols vary with
different buses. For example, where one bus requires the transmission of enquiries and/or
acknowledgments with every transmission, other buses may simply allow the broadcast of
master transmissions to all bus (slave) devices, and only the slave device related to the transac-
tion transmits data back to the sender. Another example of differences between handshaking
protocols might be that, instead of a complex exchange of control signal information being
required, a clock could be the basis of all handshaking.

Buses can also incorporate a variety of transferring mode schemes, which dictate how the

bus transfers the data. The most common schemes are single, where an address transmission
precedes every word transmission of data, and blocked, where the address is transmitted only
once for multiple words of data. A blocked transferring scheme can increase the bandwidth
of a bus (without the added space and time for retransmitting the same address), and is some-
times referred to as burst transfer scheme. It is commonly used in certain types of memory
transactions, such as cache transactions. A blocked scheme, however, can negatively impact
bus performance in that other devices may have to wait longer to access the bus. Some of the
strengths of the single transmission scheme include not requiring slave devices to have buffers
to store addresses and the multiple words of data associated with the address, as well as not

174 Chapter 4

having to handle any problems that could arise with multiple words of data either arriving out
of order or not directly associated with an address.

4.6.1 Nonexpandable Bus: I°C Bus Example

The I°C (Inter IC) bus interconnects processors that have incorporated an I°C on-chip inter-
face, allowing direct communication between these processors over the bus. A master/slave
relationship between these processors exists at all times, with the master acting as a master
transmitter or master receiver. As shown in Figure 4.33, the I>C bus is a two-wire bus with
one serial data line (SDA) and one serial clock line (SCL). The processors connected via I’C

SDA SCL

MICRO-
PG Master — - > CONTROLLER
PCB83C528
PLL
SYNTHESIZER
RO ELTEEP TR ETEER P LRt F-t--E-H—
; | TSA5512
; NON-VOLATILE
! MEMORY
Fr--===-- >
' PCF8582E 1
; M/S COLOUR
' DECODER
R RSIERECEECEEEREEEEEEEPRRPRE, ded-dhp
' | TDA9160A
: STEREO/DUAL
; SOUND
I2C Slaves - ----- besoooe- | DECODER
! TDA9840]
PICTURE
PTmmmmmmmmmssmssmssoeoeo ooy 1111 SIGNAL
; IMPROVEMENT
; TDA4670
1 HI-FI AUDIO
; PROCESSOR
poees >
; TDA9860 1
VIDEO
: PROCESSOR
--------------------------------- -1--1-{1p
TDA4685

[
T

Figure 4.33: Sample analog TV board.

Embedded Board Buses and I/O 175

are each addressable by a unique address that is part of the data stream transmitted between
devices.

The I°C master initiates data transfer and generates the clock signals to permit the transfer.
Basically, the SCL just cycles between HIGH and LOW (see Figure 4.34).

L |
scLl | | |
I's! ' ' MSC609

Figure 4.34: SCL cycles.

The master then uses the SDA line (as SCL is cycling) to transmit data to a slave. A session is
started and terminated as shown in Figure 4.35, where a “START” is initiated when the master
pulls the SDA port (pin) LOW while the SCL signal is HIGH, whereas a “STOP” condition is
initiated when the master pulls the SDA port HIGH when SCL is HIGH.

| = | =

| |
SDA : !

| |

| |

1 1
| |
| I
. | SDA
| | _
SCL I \ / \ / I SCL
1S I P
START condition STOP condition
MBC622

Figure 4.35: 1°C START and STOP conditions.

With regard to the transmission of data, the I°C bus is a serial, 8-bit bus. This means that,
while there is no limit on the number of bytes that can be transmitted in a session, only one
byte (8 bits) of data will be moved at any one time, 1 bit at a time (serially). How this trans-
lates into using the SDA and SCL signals is that a data bit is “read” whenever the SCL signal
moves from HIGH to LOW, edge to edge. If the SDA signal is HIGH at the point of an edge,
then the data bit is read as a “1”. If the SDA signal is LOW, the data bit read is a “0”. An
example of byte “00000001” transfer is shown in Figure 4.36a, while Figure 4.36b shows an
example of a complete transfer session.

4.6.2 PCI (Peripheral Component Interconnect) Bus Example: Expandable

The latest PCI specification at the time of writing, PCI Local Bus Specification Revision 2.1,
defines requirements (mechanical, electrical, timing, protocols, etc.) of a PCI bus
implementation. PCI is a synchronous bus, meaning that it synchronizes communication
using a clock. The latest standard defines a PCI bus design with at least a 33 MHz clock (up
to 66 MHz) and a bus width of at least 32 bits (up to 64 bits), giving a possible minimum

176 Chapter 4

| dummy |
SDA o\ ! _ / acknowledge | _Ir
| : (HIGH) L
- b
| |
l's ACK I sr
[[
|«——— start byte 00000001 ———| MBC633
Figure 4.36a: I°C data transfer example.
| _ —
o T\}_/ X XX -
MSB acknowledgement acknowledgement

signal from slave

byte complete
interrupt within slave
clock line held low while

interrupts are serviced

|
scL s | 1 2 7 8 9 l 1 2

| or ACK
LS
START or
repeated START
condition

signal from receiver

STOP or
repeated START
condition

MSC608

Figure 4.36b: 1°C complete transfer diagram.

throughput of approximately 132 Mbytes/sec ((33 MHz * 32 bits) / 8)—and up to 528 Mbytes/
sec maximum with 64-bit transfers given a 66-MHz clock. PCI runs at either of these clock
speeds, regardless of the clock speeds at which the components attached to it are running.

As shown in Figure 4.37, the PCI bus has two connection interfaces: an internal PCI inter-
face that connects it to the main board (to bridges, processors, etc.) via EIDE channels, and

Description

Add-in Cards Re.gglred Signal Name | Driven by
. o« Signals, | ¢ K Master
[o FRAME# Master
AD[31:0] Master/Target
@ r C/BE#[3:0] Master
Host Expansion 3D Sound ’\\%ig l
Bridge B?:Ze Card Captl:jr'é IRDY# Master
Card TRDY#
| | |] DEVSEL# Target
< PCI Local Bus] > RST# Master
| | | J PAR Master/Target
scsi 100 Mbit 3D STOP#
Controller Ethernet |Motherboard| | Graphics
Card ILESD Target
PERR# Receiver
SERR# Any
LAN R#QE
G#TN

Bus Clock (normally 33MHz; DC okay)
Indicates start of a bus cycle

Address/Data bus (multiplexed)
Bus command (address phase)
Byte enables (data phases)
Ready signal from master
Ready signal from target
Address recognized

System Reset

Parity on AD, C/BE#

Request to stop transaction
Chip select during initialization transactions
Parity Error

Catastrophic system error
Request Bus

Bus Grant

Figure 4.37: PCI bus.

Embedded Board Buses and I/O 177

the expansion PCI interface, which consists of the slots into which PCI adaptor cards (audio,
video, etc.) plug. The expansion interface is what makes PCI an expandable bus; it allows

for hardware to be plugged into the bus, and for the entire system to automatically adjust and
operate correctly.

Under the 32-bit implementation, the PCI bus is made up of 49 lines carrying multiplexed data

and address signals (32 pins), as well as other control signals implemented via the remaining
17 pins (see table in Figure 4.37).

Because the PCI bus allows for multiple bus masters (initiators of a bus transaction), it imple-
ments a dynamic centralized, parallel arbitration scheme (see Figure 4.38). PCI’s arbitration

scheme basically uses the REQ# and GNT# signals to facilitate communication between initi-
ators and bus arbitrators. Every master has its own REQ# and GNT# pin, allowing the arbitra-

tor to implement a fair arbitration scheme, as well as determining the next target to be granted
the bus while the current initiator is transmitting data.

Device Device Device
0 1 00 N
| b // |
7/
busy
k7] - k7] - - 17
(0] c ()] c c ()
> S > e E >
g [g [5| |§
o o e
|-
arb

Figure 4.38: PCI arbitration scheme.

In general, a PCI transaction is made up of five steps:

1. An initiator makes a bus request by asserting a REQ# signal to the central arbitrator.
2. The central arbitrator does a bus grant to the initiator by asserting GNT# signal.

3. The address phase which begins when the initiator activates the FRAME# signal, and
then sets the C/BE[3:0]# signals to define the type of data transfer (memory or I/O

read or write). The initiator then transmits the address via the AD[31:0] signals at the
next clock edge.

4. After the transmission of the address, the next clock edge starts the one or more data
phases (the transmission of data). Data is also transferred via the AD[31:0] signals.

The C/BE[3:0], along with IRDY# and #TRDY signals, indicate if transmitted data
is valid.

178 Chapter 4

5. Either the initiator or target can terminate a bus transfer through the deassertion of the
#FRAME signal at the last data phase transmission. The STOP# signal also acts to

terminate all bus transactions

Figures 4.39a and b demonstrate how PCI signals are used for transmission of information.

anfrmmnns.

" Data-2 Data-3 >{}
: - - o
C/BE# - s H . -f-gr--
H 1 H o H
:E H TE H i i
il . H - : :
IRDY# ‘2 : 'ﬁ 'f /‘_;_
=z H H H i
s = i i
TRDY# \ E/E T i = /_'_
5 &G - -
DEVSEL# H - H S H 3 /—I--
+ > - . ‘__’—'. !
Address Data Data
Phase Phase Phase

= BUS TRANSACTION

CLK Cycle 1 —The bus is idle.

CLK Cycle 2 — The initiator asserts a valid address and places a read com-
mand on the C/BE# signals.

** Start of address phase. **

CLK Cycle 3 —The initiator tri-states the address in preparation for the
target driving read data. The initiator now drives valid byte enable
information on the C/BE# signals. The initiator asserts IRDY# low in-
dicating it is ready to capture read data. The target asserts DEVSEL#
low (in this cycle or the next) as an acknowledgment it has positively
decoded the address. The target drives TRDY# high indicating it is
not yet providing valid read data.

CLK Cycle 4 — The target provides valid data and asserts TRDY# low indi-
cating to the initiator that data is valid. IRDY# and TRDY# are both
low during this cycle causing a data transfer to take place.

** Start of first data phase occurs, and the initiator captures the data. **

CLK Cycle 5 — The target deasserts TRDY# high indicating it needs more
time to prepare the next data transfer.

CLK Cycle 6 — Both IRDY# and TRDY# are low.

** Start of next data phase occurs, and the initiator captures the data pro-
vided by the target. **

CLK Cycle 7 — The target provides valid data for the third data phase, but the
initiator indicates it is not ready by deasserting IRDY# high.

CLK Cycle 8 — The initiator re-asserts IRDY# low to complete the third data
phase. The initiator drives FRAME# high indicating this is thalfi
data phase (master termination).

** Final data phase occurs, the initiator captures the data provided by the
target, and terminates. **

CLK Cycle 9 - FRAME#, AD, and C/BE# are tri-stated, as IRDY#, TRDY#,
and DEVSEL# are driven inactive high for one cycle prior to being
tri-stated.

Figure 4.39a: PCl read example.

FRAME# | :

AD 7"

t---{Address ¢ Data-1 Data2 » . { Data-3

C/BE#---1---(BUS CMdBEFY 3) BE#3 | :
: o« ! 4 f 3
- g H ' i
IRDY# \ & : ; i
< ' H H :
TRDY# ™ [=l = 5 H
P 2 : = i = '
DEVSEL# | TTRITITT 3 H ' i : '
. P " > + > T . . >
Address Data Data ata
Phase Phase Phase Phase

e BUS TRANSACTION

CLK Cycle 1-The bus is idle.

CLK Cycle 2 - The initiator asserts a valid address and places a write command
on the C/BE# signals.

** Start of address phase. **

CLK Cycle 3 - The initiator drives valid write data and byte enable signals. The
initiator asserts IRDY# low indicating valid write data is available. The
target asserts DEVSEL# low as an acknowledgment it has positively de-
coded the address (the target may not assert TRDY# before DEVSEL#)
The target drives TRDY# low indicating it is ready to capture data. Both
IRDY# and TRDY# are low.

** First data phase occurs with target capturing write data. **

CLK Cycle 4 - The initiator provides new data and byte enables. Both IRDY#
and TRDY# are low.

** Next data phase occurs with target capturing write data. **

CLK Cycle 5 - The initiator deasserts IRDY# indicating it is not ready to pro-
vide the next data. The target deasserts TRDY# indicating it is not ready
to capture the next data

CLK Cycle 6 - The initiator provides the next valid data and asserts IRDY# low.
The initiator drives FRAME# high indicating this is the final data phase
(master termination). The target is still not ready and keeps TRDY# high

CLK Cycle 7 — The target is still not ready and keeps TRDY# high

CLK Cycle 8 — The target becomes ready and asserts TRDY# low. Both IRDY#
and TRDY# are low,

** Final data phase occurs with target capturing write data. **

CLK Cycle 9 - FRAME#, AD, and C/BE# are tri-stated, as IRDY#, TRDY#, and
DEVSEL# are driven inactive high for one cycle prior to being tri-stated.

Figure 4.39b: PCI write example.

www.newnespress.com

Embedded Board Buses and I/O 179

4.7 Integrating the Bus with Other Board Components

Buses vary in their physical characteristics, and these characteristics are reflected in the com-
ponents with which the bus interconnects, mainly the pinouts of processors and memory chips

which reflect the signals a bus can transmit (shown in Figure 4.40).

Required Pins Optional Pins
AD[31:0] AD[63:32]
C/BE[3:0}# C/BE[7:4]#

PAR PAR64
FRAME# REQ64#
TRDY# ACK64#
IRDY# LOCK#
STOP# INTA#
DEVSEL# PCI INTB#
IDSEL# Compliant IC INTC#
PERR# INTD#
SERR# SBO#
REQ# SDONE
GNT# TDI
CLK TDO
RST# TCK
™S
TRST#

Figure 4.40: PCl-compliant IC.

Within an architecture, there may also be logic that supports bus protocol functionality. As an
example, the MPC860 shown in Figure 4.41a includes an integrated I2C bus controller.

4K System Interface Unit peripheral bus urbus
1 Cache 3
I MMU <__.I Memory Controller |[i— Y Y
Core o U-bus BIU lime rx data register| [tx data register] [mode register|
Cache <__,‘ System Functions
PowerPC™ (1) [D MMU Pp({)el\jlll()-ll-ll-\mlitzlrcf)::e [shift register | [shift register —> SDA
Parallel I/O Internal 4 General
Baud Rate Memory égtr?{r%’l etr Purpose - .®
Generators Space Timers 1 g'ainal Leett | control
Parallel Interface] 32-Bit RISC uController S, .ot
Port Internal |2nd Program ROM[4 |12 Virtual 1DMA LT ¢ ‘I:A B
Timers Peripheral Bus " Y
e
% z I I I : [Pt ® BRG SCL
SCC1][SCC2][SCC3][SCC4] [SMCH] [SMC2] [SPIT | E Communications
Processor
Time Slot Assigner Serial Interface Module

Figure 4.41: (a) 1°C on MPC860. Copyright of Freescale Semiconductor,
Inc., 2004. Used by permission. (b) 12C on MPC860.Copyright of

Freescale Semiconductor, Inc., 2004. Used by permission.

As discussed earlier this section, the I>C bus is a bus with two signals: SDA (serial data) and

SCL (serial clock), both of which are shown in the internal block diagram of the PowerPC I’C
controller in Figure 4.41b. Because I>C is a synchronous bus, a baud rate generator within the
controller supplies a clock signal if the PowerPC is acting as a master, along with two units

180 Chapter 4

(receiver and transmitter) covering the processing and management of bus transactions. In
this I2C integrated controller, address and data information is transmitted over the bus via the
transmit data register and out the shift register. When the MPC860 receives data, data is trans-
mitted into the receive data register via a shift register.

4.8 Bus Performance

A bus’s performance is typically measured by its bandwidth, the amount of data a bus can
transfer for a given length of time. A bus’s design—both physical design and its associated
protocols—will impact its performance. In terms of protocols, for example, the simpler the
handshaking scheme the higher the bandwidth (fewer “send enquiry,” “wait for acknowledg-
ment,” etc., steps). The actual physical design of the bus (its length, the number of lines, the
number of supported devices, and so on) limits or enhances its performance. The shorter the

[2 T3

bus, the fewer connected devices, and the more data lines, typically the faster the bus and the
higher its bandwidth.

The number of bus lines and how the bus lines are used—for example, whether there are sepa-
rate lines for each signal or whether multiple signals multiplex over fewer shared lines—are
additional factors that impact bus bandwidth. The more bus lines (wires), the more data that
can be physically transmitted at any one time, in parallel. Fewer lines mean more data has to
share access to these lines for transmission, resulting in less data being transmitted at any one
time. Relative to cost, note that an increase in conducting material on the board, in this case
the wires of the bus, increases the cost of the board. Note, however, that multiplexing lines
will introduce delays on either end of the transmission, because of the logic required on either
end of the bus to multiplex and demultiplex signals that are made up of different kinds of
information.

Another contributing factor to a bus’s bandwidth is the number of data bits a bus can transmit
in a given bus cycle (transaction); this is the bus width. Buses typically have a bandwidth of
some binary power of 2—such as 1 (2% for buses with a serial bus width, 8 (2%) bit, 16 (2%)
bit, 32 (2°) bit, and so on. As an example, given 32 bits of data that needs to be transmitted, if
a particular bus has a width of 8 bits, then the data is divided and sent in four separate trans-
missions; if the bus width is 16 bits, then there are two separate packets to transmit; a 32-bit
data bus transmits one packet, and serial means that only 1 bit at any one time can be trans-
mitted. The bus width limits the bandwidth of a bus because it limits the number of data bits
that can be transmitted in any one transaction. Delays can occur in each transmission session,
because of handshaking (acknowledgment sequences), bus traffic, and different clock frequen-
cies of the communicating components, that put components in the system in delaying situ-
ations, such as a wait state (a time-out period). These delays increase as the number of data
packets that need to be transmitted increases. Thus, the bigger the bus width, the fewer the
delays, and the greater the bandwidth (throughput).

Embedded Board Buses and /O 181

For buses with more complex handshaking protocols, the transferring scheme implemented
can greatly impact performance. A block transfer scheme allows for greater bandwidth over
the single transfer scheme, because of the fewer handshaking exchanges per blocks versus sin-
gle words, bytes (or whatever) of data. On the flip side, block transfers can add to the latency
due to devices waiting longer for bus access, since a block transfer-based transaction lasts
longer than a single transfer-based transaction. A common solution for this type of latency

is a bus that allows for split transactions, where the bus is released during the handshaking,
such as while waiting for a reply to acknowledgement. This allows for other transactions to
take place, and allows the bus not to have to remain idle waiting for devices of one transac-
tion. However, it does add to the latency of the original transaction by requiring that the bus be
acquired more than once for a single transaction.

This page intentionally left blank

Memory Systems

David J. Katz
Rick Gentile

5.1 Introduction

To attain maximum performance, an embedded processor should have independent bus struc-
tures to fetch data and instructions concurrently. This feature is a fundamental part of what’s
known as a Harvard architecture. Nomenclature aside, it doesn’t take a Harvard grad to see
that, without independent bus structures, every instruction or data fetch would be in the critical
path of execution. Moreover, instructions would need to be fetched in small increments (most
likely one at a time) because each data access the processor makes would need to utilize the
same bus. In the end, performance would be horrible.

With separate buses for instructions and data, on the other hand, the processor can continue to
fetch instructions while data is accessed simultaneously, saving valuable cycles. In addition,
with separate buses a processor can pipeline its operations. This leads to increased perform-
ance (higher attainable core-clock speeds) because the processor can initiate future operations
before it has finished its currently executing instructions.

So it’s easy to understand why today’s high-performance devices have more than one bus each
for data and instructions. In Blackfin processors, for instance, each core can fetch up to 64 bits
of instructions and two 32-bit data words in a single core-clock (CCLK) cycle. Alternately, it
can fetch 64 bits of instructions and one data word in the same cycle as it writes a data word.

There are many excellent references on the Harvard architecture (see Endnotes). However,
because it is a straightforward concept, we will instead focus on the memory hierarchy under-
lying the Harvard architecture.

5.2 Memory Spaces

Embedded processors have hierarchical memory architectures that strive to balance several
levels of memory with differing sizes and performance levels. The memory closest to the core
processor (known as Level 1, or L1, memory) operates at the full core-clock rate. The use of
the term closest is literal in that .1 memory is physically close to the core processor on the
silicon die so as to achieve the highest operating speeds. .1 memory is most often partitioned

184 Chapter 5

(a) L1 Instruction Memory

Cache-line fill

Instruction
Fetch

4 KB 4 KB
sub-bank sub-bank

(b) L1 Data Memory

4 KB 4 KB
sub-bank sub-bank

‘ Cache-line fill
G e ——) e
Ac(c::Z;zO < 1 101" "J-J——— x<——>
) @)] — —)] — — DMA
G G . ——)]] —
Core ‘ ‘
Access 1

4 KB
sub-bank

Figure 5.1: L1 memory architecture.

into instruction and data segments, as shown in Figure 5.1, for efficient utilization of memory
bus bandwidth. L1 instruction memory supports instruction execution in a single cycle; like-
wise, L1 data memory runs at the full core-clock rate and supports single-cycle accesses.

Of course, L1 memory is necessarily limited in size. For systems that require larger code
sizes, additional on-chip and off-chip memory is available—with increased latency. Larger on-
chip memory is called Level 2 (L2) memory, and we refer to external memory as Level 3 (L3)
memory. Figure 5.2 shows a summary of how these memory types vary in terms of speed and
size. The L1 memory size usually comprises tens of kbytes, whereas the L2 memory on-chip
is measured in hundreds of kbytes. What’s more, Harvard-style L1 requires us to partition our

www.newnespress.com

Memory Systems 185

Processor Core >600 MHz
A A A A
h 4
Single cycle)
to access L1 Instruction L1 Data ~600 MHz
Memory Memory
10’s of kbytes yy yy
v
v h 4
Several cycles | L
to accegs DMA <4, ¥ Unified L2 >300 MHz
100’s of kbytes On-chip
Off-chip A 4 v
Several system cycles to access =
) L =133 MHz
100’s of Mbytes Unified L3

External Memory

Figure 5.2: Memory-level summary.

code and data into separate places, but L2 and L3 provide a “unified” memory space. By this
we mean that the instruction and data fetch units of the processor can both access a common
memory space.

In addition, note the operating speed of each memory block. L1 memory runs at the CCLK
rate. L2 memory does as well, except that accesses typically take multiple CCLK cycles. With
L3 memory, the fastest access we can achieve is measured in system clock (SCLK) cycles,
usually much slower than the CCLK rate.

On Blackfin processors, L1 and L2 memories are each further divided into sub-banks to allow
concurrent core and DMA access in the same cycle. For dual-core devices, the core path to L2
memory is multiplexed between both cores, and the various DMA channels arbitrate for the
DMA path into L2 memory. Don’t worry too much about DMA right now; we’ll focus on it in
Chapter 3. For now, it is just important to think of it as a resource that can compete with the
processor for access to a given memory space.

As we mentioned earlier, L3 memory is defined as “off-chip memory.” In general, multiple
internal data paths lead to the external memory interface. For example, one or two core access
paths, as well as multiple DMA channels, all can contend for access to L3 memory. When
SDRAM is used as external memory, some subset of the processor’s external memory inter-
face can be shared with asynchronous memory, such as flash or external SRAM. However,
using DDR-SDRAM necessitates a separate asynchronous interface because of the signal
integrity and bus loading issues that accompany DDR. Later in this chapter, we will review the
most popular L3 memory types.

186 Chapter 5

5.2.1 L1 Instruction Memory

Compared with data fetches, instruction fetches usually occur in larger block sizes. The
instructions that run on a processor may range in size in order to achieve the best code den-
sity. For instance, the most frequently used Blackfin instructions are encoded in 16 bits, but
Blackfin instruction sizes also come in 32-bit and 64-bit variants. The instruction fetch size is
64 bits, which matches the largest instruction size. When the processor accesses instructions
from internal memory, it uses 64-bit bus structures to ensure maximum performance.

What happens when code runs from L3 memory that is less than 64 bits wide? In this case, the
processor still issues a fetch of 64 bits, but the external memory interface will have to make
multiple accesses to fill the request. Take a look at Figure 5.3 to see how instructions might
actually align in memory. You’ll see that the 64-bit fetch can contain as many as four instruc-
tions or as few as one. When the processor reads from memory instructions that are different
in size, it must align them to prevent problems accessing those instructions later.

64-bit instruction fetch can be between 1 and 4 instructions

One 64-bit instruction

One 32-bit instruction One 32-bit instruction

One 16-bit instruction | One 16-bit instruction | One 16-bit instruction | One 16-bit instruction

One 32-bit instruction One 16-bit instruction |One 16-bit instruction

In addition, portions of instructions can be fetched

One 32-bit instruction One half of a 64-bit instruction

Figure 5.3: Instruction alignment.

5.2.2 Using L1 Instruction Memory for Data Placement

In general, instruction memory is meant to be used only for instructions, because in a Harvard
architecture, data can’t be directly accessed from this memory. However, due to the code effi-
ciency and low byte count that some applications require, data is sometimes staged in L1 instruc-
tion memory. In these cases, the DMA controller moves the data between instruction and data
memories. Although this is not standard practice, it can help in situations where you’d otherwise
have to add more external memory. In general, the primary ways of accessing instruction mem-
ory are via instruction fetches and via the DMA controller. A back-door method is frequently
provided as well.

Memory Systems 187

5.2.3 L1 Data Memory

L1 data memory exists as the complement to L1 instruction memory. As you might expect
from our L1 instruction memory discussion, the processor can access L1 data memory in a
single cycle. As stated earlier, internal memory banks usually are constructed of multiple sub-
banks to allow concurrent access between multiple resources.

On the Blackfin processor, L1 data memory banks consist of four 4-kbyte sub-banks, each
with multiple ports, as shown in Figure 5.1b. In a given cycle, the core can access data in two
of the four sub-banks, whereas the DMA controller can access a third one. Also, when the
core accesses two data words on different 32-bit boundaries, it can fetch data (8, 16, or 32 bits
in size) from the same sub-bank in a single cycle while the DMA controller accesses another
sub-bank in the same cycle. See Figure 5.4 to get a better picture of how using sub-banks can
increase performance. In the “unoptimized” diagram, all the buffers are packed into two sub-
banks. In the “optimized” diagram, the buffers are spread out to take advantage of all four
sub-banks.

Partitioning Data in L1 Data Memory Sub-Banks

Core fetch <+— Buffer0 +— DMA Core fetch «— _____ I?L_Jf_f?r_o _____
Buffer1
Buffer2 Buffer1 l—
Core fetch < Cosfficients [DMA -2t DMA
Unused | lo____ I?E‘f_f?r_z _____ —» DMA
Unused Core fetch +— ___ _C:cie_f'[it_:i?pfs_ -
Un-optimized Optimized
DMA and core conflict when Core and DMA operate
accessing sub-banks in harmony

Figure 5.4: Memory bank structure and corresponding bus structure.

We’ve seen that there are two separate internal buses for data accesses, so up to two fetches
can be performed from .1 memory in a single cycle. When fetching to a location outside L1
memory, however, the accesses occur in a pipelined fashion. In this case, the processor has
both fetch operations in the same instruction. The second fetch initiates immediately after the
first fetch starts. This creates a head start condition that improves performance by reducing
the cycle count for the entire instruction to execute.

5.3 Cache Overview

By itself, a multilevel memory hierarchy is only moderately useful, because it could force a
high-speed processor to run at much slower speeds to accommodate larger applications that

188 Chapter 5

only fit in slower external memory. To improve performance, there’s always the option of
manually moving important code into and out of internal SRAM. But there’s also a simpler
option: cache.

On the Blackfin processor, portions of L1 data and instruction memory can be configured as
either SRAM or cache, whereas other portions are always SRAM. When L1 memory is con-
figured as cache, it is no longer directly accessible for reads or writes as addressable memory.

5.3.1 What Is Cache?

You might be wondering, “Why can’t more L1 memory be added to my processor?” After all,
if all of a processor’s memory ran at the same speed as L1, caches and external memory would
not be required. Of course, the reason is that L1 memory is expensive in terms of silicon size,
and big L1 memories drive up processor prices.

Enter the cache. Specifically, cache is a smaller amount of advanced memory that improves
performance of accesses to larger amounts of slower, less expensive memories.

By definition, a cache is a set of memory locations that can store something for fast access
when the application actually needs it. In the context of embedded processors, this “something”
can be either data or instructions. We can map a relatively small cache to a very large cacheable
memory space. Because the cache is much smaller than the overall cacheable memory space,
the cacheable addresses alias into locations in cache, as shown in Figure 5.5. The high-level
goal of cache is to maximize the percentage of “hits,” which are instances when the processor
finds what it needs in cache instead of having to wait until it gets fetched from slower memory.

Actually, cache increases performance in two ways. First, code that runs most often will have
a higher chance of being in single-cycle memory when the processor needs it. Second, fills
done as a result of cache-line misses will help performance on linear code and data accesses
because by the time the first new instruction or data block has been brought into the cache, the
next set of instructions (or data) is also already on its way into cache. Therefore, any cycles
associated with a cache-line miss are spread out across multiple accesses.

Instruction cache almost always helps improve performance, whereas data cache is sometimes
beneficial. The only time that instruction cache can cause problems is in the highest-performance
systems that tax the limits of processor bus bandwidths.

Each sub-bank of cache consists of ways. Each way is made up of /ines, the fundamental com-
ponents of cache. Each cache line consists of a collection of consecutive bytes. On Blackfin
devices, a cache line is 32 bytes long. Figure 5.6 shows how Blackfin instruction and data
caches are organized.

Ways and lines combine to form locations in cache where instructions and data are stored. As
we mentioned earlier, memory locations outside the cache alias to specific ways and lines,

Memory Systems 189
4-Way Set-Associative Cache
32-bit Address for Lookup 4:1 MUX Eg.%]
A A A
Way 3
Valid Tag
<1> <20>
| |
| [32-Byte Line 0]
Way 2
Valid Tag
<1> <20>
| |
| [32-Byte Line 0]
" Way 1
I:I: Valid Tag
<1> <20>
| |
| [32-Byte Line 0 |
Way 0
I:I: Valid Tag
<1> <20>
| |
> 32-Byte Line 0
I:I: 32-Byte Line 1 [—
32-Byte Line 2
32-Byte Line 3

A 4

| |32-Byte Line 31

Figure 5.5: Cache concept diagram.

(a) Instruction Cache

e One 16 KB bank

e Four 4 KB sub-banks

e Four ways per sub-bank

e Each 1KB way has 32 lines
® There are 32 bytes per line

(b) Data Cache

Two 16 KB banks

Four sub-banks per bank
Two ways per sub-bank
Each 2 KB way has 64 lines
There are 32 bytes per line

Figure 5.6: Blackfin cache organization.

190 Chapter 5

Source Memory

Cacheline0 1 2 3 4 5 6 7 8 9 10

Fully Associative Cache — 4 Way Set-Associative Cache — Direct-Mapped Cache —
Many locations for data/instructions Multiple locations for data/instructions Only one location for data/instructions

Figure 5.7: Cache architectures.

depending on the type of cache that is implemented. Let’s talk now about the three main kinds of
cache: direct-mapped, fully associative, and set-associative. Figure 5.7 illustrates the basic differ-
ences between types. It is important to understand the variety of cache your processor employs,
because this determines how the cacheable memory aliases to the actual cache memory.

5.3.2 Direct-Mapped Cache

When we talk about a cache that is direct-mapped, we mean that each memory location maps
to a single cache line that it shares with many other memory locations. Only one of the many
addresses that share this line can use it at a given time. Although this is the simplest scheme to
implement, it provides the lowest percentage of performance increase. Since there is only one
site in the cache for any given external memory location, code that has lots of branches will
always result in cache-line misses. Direct mapping only helps when code flow is very linear, a
situation that does not fit the control nature of the typical embedded application.

The primary problem with this type of cache is that the probability the desired code or data is
actually in cache is the lowest of the three cache models we describe. Thrashing occurs when
a line in cache is constantly being replaced with another line. This is much more common in a
direct-mapped cache than in other cache architectures.

5.3.3 Fully Associative Cache

In a fully associative cache, any memory location can be cached in any cache line. This is the
most complicated (and costly) scheme to implement in silicon, but performance will always
be the best. Essentially, this implementation greatly reduces the number of cache-line misses

Memory Systems 191

in steady-state operation. Because all addresses map to all sites in the cache, the probability
increases that what you want to be in cache will actually be there.

5.3.4 N-Way Set-Associative Cache

The previous two cache designs represent the two ends of the performance spectrum. The final
design we will discuss is actually the most common implementation. It is called the N-way set-
associative cache, where N is typically 2 or 4. This scheme represents a compromise between
the two previously mentioned types of cache. In this scenario, the cache comprises sets of N
lines each, and any memory address can be cached in any of those N lines within a set. This
improves hit ratios over the direct-mapped cache, without the added design complexity and
silicon area of the fully associative design. Even so, it achieves performance very close to that
of the fully associative model.

In Blackfin processors, the data cache is two-way set-associative, and the instruction cache is
four-way set-associative. This mostly has to do with the typical profile of execution and data
access patterns in an embedded application. Remember, the number of ways increases the
number of locations within the cache to which each address can alias, so it makes sense to
have more for instruction cache, where addressing normally spans a larger range.

5.3.5 More Cache Details

As we saw in Figure 5.6, a cache structure is made up of lines and ways. But there’s certainly
more to cache than this. Let’s take a closer look.

Each line also has a “tag array” that the processor uses to find matches in the cache. When an
instruction executes from a cached external memory location, the processor first checks the
tag array to see if the desired address is in cache. It also checks the “validity bit” to determine
whether a cache line is valid or invalid. If a line is valid, this means that the contents of this
cache line contain values that can be used directly. On the other hand, when the line is invalid,
its contents can’t be used.

As we stated before, a cache hit refers to a case when the data (or instruction) the core wants
to access is already in the cache. Likewise, a cache miss refers to the case when the processor
needs information from the cache that is not yet present. When this happens, a cache-line fill
commences.

As noted earlier, the information in the tag array determines whether a match exists or not. At
the simplest level, a cache-line fill is just a series of fetches made from cacheable memory.
The difference is that when cache is off, the core fetches only what it needs, and when cache is
on, the core may actually fetch more than it needs (or hopefully, what it will need soon!).

So, as an example, let’s assume that cache is enabled and the location being accessed has
been configured as cacheable. The first time a processor accesses a specific location in, say,

192 Chapter 5

L3 memory, a cache miss will generate a cache-line fill. Once something is brought into
cache, it stays there until it is forced out to make room for something else that the core needs.
Alternatively, as we will soon see, it is sometimes prudent to manually invalidate the cache
line.

As we noted earlier, Blackfin processors fetch instructions 64 bits at a time. When instruc-
tion cache is enabled and a cache miss occurs, the cache-line fill returns four 64-bit words,
beginning with the address of the missed instruction. As Figure 5.8 illustrates, each cache

line aligns on a fixed 32-byte boundary. If the instruction is in the last 64-bit word in a cache
line, that will be the first value returned. The fill always wraps back around to the beginning
of the line and finishes the fetch. From a performance standpoint this is preferable because we
wouldn’t want the processor to wait for the three unwanted 64-bit fetches to come back before
receiving the desired instruction.

Cache Line Replacement

Cache line fill begins with requested word

Target Word | Fetching Order for Next Three Words

WDO WDO0, WD1, WD2, WD3
WD1 WD1, WD2, WD3, WDO
WD2 WD2, WD3, WDO0, WD1
WD3 WD83, WDO0, WD1, WD2

Figure 5.8: Cache-line boundaries.

When a cache hit occurs, the processor treats the access as though it were in L1 memory—that
is, it fetches the data/instruction in a single CCLK cycle. We can compute the cache hit rate as
the percentage of time the processor has a cache hit when it tries to fetch data or instructions.
This is an important measure because if the hit rate is too low, performance will suffer. A hit rate
over 90% is desirable. You can imagine that, as the hit rate drops, performance starts to approach
a system in which everything to which the core needs access resides in external memory.

Actually, when the hit rate is too low, performance will be worse than it is when everything

is in external memory and cache is off. This is due to the fact that the cache-line size is larger
than the data or instruction being fetched. When cache misses are more common than cache
hits, the core will end up waiting for unwanted instructions or data to come into the system.
Of course, this situation degrades performance; fortunately, it’s difficult to create a case where
this happens.

Memory Systems 193

As a rule of thumb, the more associative a cache is, the higher the hit rate an application can
achieve. Also, as the cache size grows, the number of cache ways has less impact on hit rate,
but performance still does increase.

As more items are brought into cache, the cache itself becomes full with valid data and/or
instructions. When the cache has an open line, new fetches that are part of cache-line fills pop-
ulate lines that are invalid. When all the lines are valid, something has to be replaced to make
room for new fetches. How is this replacement policy determined?

A common method is to use a least recently used (LRU) algorithm, which simply targets for
replacement the data or instruction cache line that has not been accessed for the longest time.
This replacement policy yields great performance because applications tend to run small
amounts of code more frequently. This is true even when application code approaches Mbytes
in size.

5.3.6 Write-Through and Write-Back Data Cache

Data cache carries with it some additional important concepts. There are generally two modes
of operation for data cache: write-through and write-back, as shown in Figure 5.9.

(a) Write-through (b) Write-back

Processor Processor

Updated at same time

v v
Updated only
Data cache Data cache when entry replaced

in data cache

- ~ . ~
- .~ e .

s

Memory Memory

Figure 5.9: Write-through and write-back data cache.

The term write-through means that the information is written both to the cache and to the source
memory at the time it is modified, as shown in Figure 5.9a. This means that if a data element is
brought into cache and modified a million times while the processor is executing an algorithm,
the data is written to the source memory a million times as well. In this case, the term source
memory refers to the actual location being cached in L2 or L3 memory. As you can see, write-
through mode can result in lots of traffic on the bus between cache and the source memory. This
activity can impact performance when other resources are accessing the memory.

194 Chapter 5

Write-through data cache does have one advantage over write-back, however: It helps keep
buffers in source memory coherent when more than one resource has access to them. For
example, in a dual-core device with shared memory, a cache configured as write-through can
help ensure that the shared buffer has the latest data in it. Assume that core A modifies the
buffer and then core B needs to make subsequent changes to the same buffer. In this case,
core A would notify core B when the initial processing was complete, and core B would have
access to the latest data.

The term “write-back™ means that the information is written only to the cache, until it is being
replaced, as shown in Figure 5.9b. Only then is the modified data written back to source mem-
ory. Therefore, if a data value is modified a million times, the result is only written locally to
the cache until its cache entry is replaced, at which point source memory will be written a single
time. Using our dual-core example again, coherency can still be maintained if core A manually
“flushes” the cache when it is done processing the data. The flush operation forces the data in
cache to be written out to source memory, even though it is not being replaced in cache, which
is normally the only time this data would be written to source memory.

Although these two modes each have merit, write-back mode is usually faster because the proc-
essor does not need to write to source memory until absolutely necessary. Which one should
you choose? The choice depends on the application, and you should try both ways to see which
will give the best performance. It is important to try these options multiple times in your devel-
opment cycle. This approach will let you see how the system performs once peripherals are inte-
grated into your application. Employing the write-back mode (versus write-through mode) can
usually increase performance between 10% and 15%.

These write policy concepts don’t apply to instruction memory, because modifying code in
cached instruction memory isn’t a typical programming model. As a result, instruction cache
is not designed with this type of feature.

Before we move on, let’s look at one additional write-back mode mechanism. Figure 5.10
illustrates the composition of a cache line. Specifically, an address tag precedes the set of
four 64-bit words (in the case of Blackfin devices). The cache array tags possess a dirty bit to

32-byte of data/instructions

S S S

Address Tag | Way | Word 0| V | Word 1| V [Word2 | V | Word 3

A A

I I
Determines Validity bits
bank, way, line, and
dirty/clean status

Figure 5.10: Cache array with tags.

Memory Systems 195

mark data that has changed in cache under write-back mode. For example, if we read a value
from memory that ends up in cache and the value is subsequently modified by the processor,
it is marked as “dirty.” The cache uses this bit as a reminder that before the data is completely
removed from cache, it needs to be written out to its source memory. Processors often have a
victim buffer that holds data that was replaced in the cache. Let’s consider why and how this
helps performance.

When a data miss occurs in write-back mode and the entire cache contains valid data, some-
thing must be removed from the cache to hold the data about to be fetched. Recall that when
this happens, the cache (assuming an LRU policy) will replace the data least recently used.
What if there’s “dirty” data in the line that is replaced—that is, data which has changed and
needs to be updated in the source memory? The processor is most immediately interested in
obtaining data for the currently executing instruction. If it had to wait for the dirty data to be
written back to source memory, and then wait again for the new data to be fetched, the core
would stall longer than desired. This is where the victim buffer comes in; it holds the data
that needs to be written back, while the core gets its new data quickly. Once the cache-line fill
completes, the victim buffer empties and the source memory is current.

5.4 External Memory

So far in this chapter, our discussions have centered on internal memory resources. Let’s now
focus on the many storage options available external to the processor. We generically refer to
external memory as “L3” throughout this text, but you will soon see that the choices for L3
memory vary considerably in terms of the way they operate and their primary uses. They all
can play an important role in media-based applications. We will start with the highest-per-
formance volatile memories and move to various nonvolatile options. It is important to note
here that the synchronous and asynchronous memories described here are directly memory-
mapped to a processor’s memory space. Some of the other memories we’ll discuss later in this
chapter, such as NAND flash, are also mapped to an external memory bank, but they have to
be indirectly accessed.

5.4.1 Synchronous Memory

We begin our discussion with synchronous memory because it is the highest-performance
external memory. It’s widely available and provides a very cost-effective way to add large
amounts of memory without completely sacrificing performance. We focus on SDRAM tech-
nology to provide a good foundation for understanding, but then we’ll proceed to an overview
of current and near-term follow-ons to SDRAM: DDR-SDRAM 1 and 2.

Both SDRAM and DDR are widely available and very cost-effective because the personal
computer industry uses this type of memory in standard DIMM modules.

196 Chapter 5

5.4.1.1 SDRAM

SDRAM is synchronous addressable memory composed of banks, rows, and columns. All
reads and writes to this memory are locked to a processor-sourced clock. Once the processor
initializes SDRAM, the memory must be continually refreshed to ensure that it retains its state.

Clock rates vary for SDRAM, but the most popular industry specifications are PC100 and PC133,
indicating a 100MHz and 133 MHz maximum clock, respectively. Today’s standard SDRAM
devices operate at voltages between 2.5V and 3.3V, with the PC133 memory available at 3.3 V.

Memory modules are specified in terms of some number of Mbits in addition to a variety of
data bus sizes (e.g., X8, X 16, X32). This sometimes causes confusion, but it is actually a
straightforward nomenclature. For example, the X 16 designation on a 256-Mbit device implies
an arrangement of 16 Mbits X 16. Likewise, for a X32 bus width, a 256-Mbit device would be
configured as 8 Mbits X 32. This is important when you are selecting your final memory size.
For example, if the external bus on your processor is 32 bits wide and you want 128 Mbytes of
total memory, you might connect two 32 Mbits X 16 modules.

At its lowest level, SDRAM is divided into rows and columns. To access an element in an
SDRAM chip, the row must first be “opened” to become “active.” Next, a column within that
row is selected, and the data is transferred from or written to the referenced location. The proc-
ess of setting up the SDRAM can take several processor system clock cycles. Every access
requires that the corresponding row be active.

Once a row is active, it is possible to read data from an entire row without re-opening that row
on every access. The address within the SDRAM will automatically increment once a location
is accessed. Because the memory uses a high-speed synchronous clock, the fastest transfers
occur when performing accesses to contiguous locations, in a burst fashion.

Figure 5.11 shows a typical SDRAM controller (SDC) with the required external pins to inter-
face properly to a memory device. The data access size might be 8, 16, or 32 bits. In addition,
the actual addressable memory range may vary, but an SDC can often address hundreds of
Mbytes or more.

Data [15:0] » Data [15:0]
ADDR [19:1] & ADDR [19:1]
SDQM [1:0] » QM [1:0]
SMS > MS
Processor SDRAM CLKOUT » CLK SDRAM
Controller gckE » SCKE
SA10 » SA10
SRAS » RAS
SCAS » CAS
SWE » WE

Figure 5.11: Representative SDRAM controller.

Memory Systems 197

SDRAMs are composed of internal banks—most commonly, four equally sized banks. So if you
connected 64 Mbytes of SDRAM to a processor, the SDRAM would consist of four 16-Mbyte
internal banks. This is important to remember because you’ll derive performance benefits from
partitioning your application across the internal banks. Another thing to note—the term bank is
unfortunately used to describe both the internal structure of an SDRAM and an entire SDRAM
module (as viewed from the system level). For example, two 64-Mbyte external SDRAM banks
may connect to a processor, and each 64-Mbyte module may consist of four 16-Mbyte infer-
nal banks each.

The SDRAM controller uses the external pins shown in Figure 5.11 to issue a series of com-
mands to the SDRAM. Table 5.1 provides a brief description of each of the pins, and Table
5.2 shows how the pins work in concert to send commands to the SDRAM. It generates these
commands automatically based on writes and reads by the processor or DMA controller.

Table 5.1: SDRAM pin description.

ADDR External address bus

DATA External data bus

SRAS SDRAM row address strobe (connect to SDRAM’s RAS pin)

SCAS SDRAM column address strobe (connect to SDRAM’s CAS pin)

SWE SDRAM write-enable pin (connect to SDRAM’s WE pin)

SDQM SDRAM data mask pins (connect to SDRAM’s DQM pins)

SMS Memory select pin of external memory bank configured for SDRAM

SA10 SDRAM A10 pin (used for SDRAM refreshes; connect to SDRAM’s A[10] pin)
SCKE SDRAM clock-enable pin (connect to SDRAM’s CKE pin)

CLKOUT SDRAM clock pin (connect to SDRAM’s CLK pin; Opverates at SCLK frequency)

Table 5.2: SDRAM commands.

Command SMs SCAS SRAS SWE SCKE SA10
Precharge All low high low low high high
Single Precharge low high low low high low
Bank Activate low high low high high -
Load Mode Register low low low low high -
Load Extended Mode Register low low low low high low
Read low low high high high low
Write low low high low high low
Auto-Refresh low low low high high -
Self-Refresh low low low high low -
NOP (No Operation) low high high high high -
Command Inhibit high high high high high -

198 Chapter 5

Figure 5.12 illustrates an SDRAM transaction in a simplified manner. First, the higher bits of
the address are placed on the bus and /RAS is asserted. The lower address bits of the address
are then placed on the bus and /CAS is asserted. The number of rows and columns will depend
on the device you select for connection.

RAS

CAS
Address >< Row ><Co|umn><

Figure 5.12: Basic SDRAM timing diagram.

It is important to consider the way your processor’s SDC multiplexes SDRAM addresses.
Consider two possibilities shown in Figure 5.13 as an example. In Figure 5.13b, the SDRAM
row addresses are in the higher bit positions. In Figure 5.13a, the bank address lines are in

the higher bit positions, which can result in better performance, depending on the applica-
tion. Why is this the case? The SDRAM can keep four pages open across four internal banks,
thus reducing page opening/closing latency penalties. If your system is connected as shown in
Figure 5.13b, it would be very hard to partition your code and data to take advantage of this

(a) 31 26 0
Bank Row Column Byte
Address Address Address Mask
(b) 31 26 0
Row Bank Column Byte
Address Address Address Mask

Figure 5.13: Possible SDRAM address muxing.

Memory Systems 199

feature. Specifically, you would have to slice up your data and code and essentially interleave
it in memory to make use of all open rows.

Let’s now discuss briefly some of the key commands that the SDRAM controller uses to inter-
face with the memory device.

The Bank Activate command causes the SDRAM to open an internal bank (specified by the
bank address) in a row (specified by the row address). The pins that are used for the bank

and row addresses depend on the mappings of Figure 5.13. When the SDC issues the Bank
Activate command, the SDRAM opens a new row address in the dedicated bank. The memory
in the open internal bank and row is referred to as the open page. The Bank Activate command
must be applied before issuing a read or write command.

The Precharge command closes a specific internal bank in the active page or all internal banks
in the page.

The Precharge All command precharges all internal banks at the same time before executing
an auto-refresh.

A Read/Write command executes if the next read/write access is in the present active page.
During the Read command, the SDRAM controller drives the column address. The delay
between Bank Activate and Read commands is determined by the tycp parameter in the
SDRAM data sheet. The SDRAM then makes data available after the CAS latency period
described below.

In the Write command, the SDRAM controller drives the column address. The write data
becomes valid in the same cycle. The delay between Bank Activate and Write commands is
determined by the tycp parameter in the SDRAM data sheet.

Whenever a page miss occurs (an access to a location on a row that is not open), the SDC exe-
cutes a Precharge command followed by a Bank Activate command before executing the Read
or Write command. If there is a page hit, the Read or Write command can be issued immedi-
ately without requiring the Precharge command.

The Command Inhibit and NOP commands are similar in that they have no effect on the cur-
rent operations of the SDRAM. The only difference between the two is that the NOP is used
when the actual SDRAM bank has been selected.

The Load Mode command is used to initialize an SDRAM chip. Load Extended Mode is an
additional initialization command that’s used for mobile SDRAM:s.

Auto-Refresh and Self-Refresh commands regulate the way the contents of the SDRAM are
refreshed periodically. We’ll talk more about them shortly.

200 Chapter 5

5.4.1.2 CAS Latency

SDRAM data sheets are swimming in numbers that specify the performance of the device.
What do all these parameters really mean?

The Column Address Strobe (CAS) latency, abbreviated as CL2 or CL3, is the delay in clock
cycles between when the SDRAM detects a Read command and when it provides the data at
its output pins. This CAS latency is an important selection parameter. A common term used
to identify SDRAM devices is either CAS2 or CAS3. These actually represent CL2 or CL3,
since they refer to CAS latency timings (e.g., two system clocks versus three system clocks).
An SDRAM with a CAS latency of two cycles will likely yield better throughput than one
with a three-cycle latency. This is based on the fact that for random accesses, a cycle will be
saved each time an access is made. You should specify this parameter based on application
needs. Does the extra performance of the faster device justify the extra cost? For high-per-
formance systems, the answer is usually “Yes.”

The CAS latency of a device must be greater than or equal to its column access time (tcac)
and its frequency of operation (tc k). That is, the selection of CL must satisfy this equation:

CL X tcrx = teac

For example, if tcp i 1s 7.5ns (133 MHz system clock) and tcac is 15ns, you can select a CL2
device. If tcac is 20ns, you must choose CL3. The PC133 SDRAM specification only allows
for CAS latency values of 1, 2, or 3.

Sometimes you will see memory devices described as 3-2-2 or 2-2-2. These numbers repre-
sent the CAS latency, RAS-to-CAS delay (tzcp), and Row Precharge (tzp) values, respectively,
in clock cycles at 100 MHz. Note that for any other speed of operation, such as 66 MHz or

133 MHz, these numbers would change. For example, let’s assume that for a given module,
tcac 18 251s, tyep i 20ns, and tgp is 20ns. This would indicate 3-2-2 timings at 100 MHz
(substituting tgcp or tgp for tcac in the preceding equation as appropriate), but what would
they be at 133 MHz? Since 133 MHz corresponds to a 7.5 ns clock cycle (tc;), our equation
gives timings of 4-3-3, which would be invalid for the SDRAM, since the CAS latency cannot
be higher than 3. Therefore, you would not be able to operate this module at 133 MHz.

One more point to understand about the CAS latency figure (CAS2 or CAS3) is that SDRAM
suppliers often advertise their top PC100 SDRAM as CAS2. Recall that the CAS latency
number is derived from tcpc. Unfortunately, the vendor doesn’t provide you with the tcac
value. Imagine a CL2 part with a 20-ns tc5c and a CL3 part with a 21-ns tcac. At 133MHz
(7.5ns clock period), both parts would have a CAS latency value of 3. This means that
although a CL2 part may be designed to handle a faster system clock speed than a CL3 part,
you won’t always see a performance difference. Specifically, if you don’t plan on running
your SDRAM faster than 125 MHz, the device with the lower value of CL doesn’t provide any
additional benefit over the device with the higher CL value.

Memory Systems 201

5.4.1.3 Refreshing the SDRAM

SDRAM controllers have a refresh counter that determines when to issue refresh commands
to the SDRAM. When the SDC refresh counter times out, the SDC precharges all banks of
SDRAM and then issues an Auto-Refresh command to them. This causes the SDRAM to
generate an internal refresh cycle. When the internal refresh completes, all internal SDRAM
banks are precharged.

In power-saving modes where SDRAM data needs to be maintained, it is sometimes necessary
to place the SDRAM in self-refresh mode. Self-refresh is also useful when you want to buffer
the SDRAM while the changes are made to the SDRAM controller configuration. Moreover,
the self-refresh mode is useful when sharing the memory bus with another resource. It can pre-
vent conflicts on shared pins until the first processor regains ownership of the bus.

When you place the SDRAM in self-refresh mode, it is the SDRAM’s internal timer that initi-
ates auto-refresh cycles periodically, without external control input. Current draw when the
SDRAM is in self-refresh mode is on the order of a few milliamps, versus the typical “on”
current of 100mA.

The SDC must issue a series of commands, including the Self-Refresh command, to put the
SDRAM into this low power mode, and it must issue another series of commands to exit self-
refresh mode. Entering self-refresh mode is controlled by software in an application. Any
access made by the processor or the DMA controller to the SDRAM address space causes the
SDC to remove the SDRAM from self-refresh mode.

It is important to be aware that core or DMA accesses to SDRAM are held off until an in-process
refresh cycle completes. This is significant because if the refresh rate is too high, the potential
number of accesses to SDRAM decreases, which means that SDRAM throughput declines as
well. Programming the refresh rate to a higher value than necessary is a common mistake that
programmers make, especially on processors that allow frequency modification on the fly. In
other words, they forget to adjust the Refresh Control register to a level commensurate with the
newly programmed system clock frequency. As long as the effective refresh rate is not too slow,
data will not be lost, but performance will suffer if the rate is too high.

5.4.1.4 Mobile SDRAM

A variant of SDRAM that targets the portable device realm is called mobile SDRAM. It comes
in a smaller form factor and smaller memory sizes than its traditional cousin, and it can oper-
ate down to 2.5V or 1.8V, greatly reducing SDRAM power consumption. Mobile SDRAM

is also known as LP SDRAM, or low-power SDRAM. It is worth mentioning that mobile
SDRAM devices typically specify a supply voltage and an I/O voltage. For the most power-
sensitive applications, the supply voltage is at 2.5 V while the 1/O supply is 1.8 V.

In addition to a reduced form factor and greatly reduced power budget, mobile SDRAM has
three key JEDEC-specified features that set it apart from SDRAM. The first is a temperature

202 Chapter 5

compensated self-refresh mode. The second is a partial array self-refresh capability, and the
third is a “deep power-down’ mode.

The temperature-compensated self-refresh capability allows you to program the mobile SDRAM
device to automatically adjust its refresh rate in self-refresh mode to accommodate case tempera-
ture changes. Some mobile devices assume you will connect a temperature sensor to the case
and adjust the parameters associated with this feature. Others have a built-in temperature sensor.
Either way, the goal is to save power by adjusting the frequency of self-refresh to the minimum
level necessary to retain the data.

The partial array self-refresh feature allows you to control which banks within a mobile SDRAM
are actually refreshed when the device is in self-refresh mode. You can program the device so
that 100%, 50%, or 25% of the banks are kept in self-refresh mode. Obviously, any data you
need to keep must reside in a bank that is self-refreshed. The other banks are then used for data
that does not need to be retained during power-saving modes.

Finally, the deep power-down feature allows you to remove power from the device via a write
to the control register of the SDRAM chip to prevent any current draw during self-refresh mode
(thus saving hundreds of pA). Of course, all data is lost when you do this, but this mode can be
very useful in applications in which the entire board is not powered down (e.g., some compo-
nents are operational and are powered by the same regulator) but you want to extend the battery
life as long as possible.

5.4.1.5 Double Data Rate (DDR) SDRAM/DDR1

SDRAM and mobile SDRAM chips provide the bulk of today’s synchronous memory in produc-
tion. This is quickly changing, however, as an evolved synchronous memory architecture pro-
vides increased performance. Double data rate (DDR) SDRAM provides a direct path to double
memory bandwidth in an application. In addition, although the industry has more or less skipped
2.5V SDRAM devices (with the notable exception of mobile SDRAM), standard DDR1 chips
are all at 2.5 V.

The traditional SDRAM controller often shares processor pins with various types of asynchro-
nous memory, but the DDR specification is much tighter to allow for much faster operation.
As such, a DDR memory module will not share pins with other types of memory. Additionally,
DDR memories require a DDR controller to interface with them; a processor’s SDRAM con-
troller is incompatible with DDR memory.

As the name suggests, a key difference between SDRAM and DDR is that whereas SDRAM
allows synchronous data access on each clock cycle, DDR allows synchronous access on both
edges of the clock—hence the term double data rate. This results in an immediate increase in
peak performance when you use DDR in an application.

Memory Systems 203

As an example, whereas the peak transfer rate of a PC133 SDRAM running at 133 MHz
would be 4 bytes X 133 MHz, the maximum peak transfer rate of the equivalent DDR1 mod-
ule running at the same frequency is 4 bytes X 266 MHz.

Another important advantage DDR has over SDRAM is the size of the “prefetch” it accepts.
DDRI1 has a prefetch size of 2n, which means that data accesses occur in pairs. When reads

are performed, each access results in a fetch of two data words. The same is true for a single
write access—that is, two data words must be sent.

This means that the minimum burst size of DDR1 is two external data words. For reads, the
DDR controller can choose to ignore either of the words, but the cycles associated with both
will still be spent. So you can see that although this feature greatly enhances performance of
sequential accesses, it erodes performance on random accesses.

DDR SDRAM also includes a strobe-based data bus. The device that drives the data signals
also drives the data strobes. This device is the DDR module for reads and the DDR control-
ler for writes. These strobes allow for higher data rates by eliminating the synchronous clock
model to which SDRAM adheres.

When all these DDR feature enhancements are combined, performance really shines. For
example, at 400 MHz, DDR1 increases memory bandwidth to 3.2 Gbytes/s, compared to
PC133 SDRAM theoretical bandwidth of 133 MHz X 4 bytes, or 532 Mbytes/s.

Just as a low-power version of SDRAM exists, mobile DDR1 also exists, with many simi-
larities to mobile SDRAM. Mobile DDR1 devices run as low as 1.8 V. Another advantage of
mobile DDRI1 is that there is no minimum clock rate of operation. This compares favorably to
standard DDR1, whose approximate 80 MHz minimum operating frequency can cause prob-
lems in power-sensitive applications.

5.4.1.6 DDR2 SDRAM

DDR2 SDRAM is the second generation of DDR SDRAM. It offers data rates of up to

6.4 Gbytes/s, lower power consumption, and improvements in packaging. It achieves this higher
level of performance and lower power consumption through faster clocks, 1.8 V operation and
signaling, and a simplified command set. Like DDR1, DDR2 has a mobile variety as well,
targeted for handheld devices.

Table 5.3 shows a summary of the differences between DDR1, mobile DDR1, and DDR2.
It should be noted that DDRI is not compatible with a conventional SDRAM interface, and
DDR?2 is not compatible with DDR1. However, DDR?2 is planned to be forward-compatible
with next-generation DDR technology.

5.4.2 Asynchronous Memory

As we have just seen, SDRAM and its successors both are accessed in a synchronous manner.
Asynchronous memory, as you can guess, does not operate synchronously to a clock. Each

204 Chapter 5

Table 5.3: Comparison of DDr1, mobile DDR1, and DDr2.

Feature DDR1 Mobile DDR1 DDR2
Data transfer rate 266,333, 400 MHz 200, 250, 266, 400, 533, 667,
333 MHz 800 MHz
Operating voltage 2.5V 1.8V 1.8V
Densities 128 Mb-1Gb 128-512Mb, 256 Mb-4Gb
1 Gb(future)
Internal banks 4 4 4and 8
Prefetch 2 2 4
CAS latency 2,2.5,3 2,3 3,4,5,6
Additive latency No No 0,1,2,3,4,5
READ latency CAS latency CAS latency Additive latency +
CAS latency
WRITE latency Fixed = 1 cycle Fixed = 1 cycle READ latency — 1 cycle
/0O width X4, X8, X16 X4, X8, X16, X32 X4, X8, X16
On-die termination No No Selectable
Off-chip driver No No Yes
Burst length 2,4,8 2,4,8, 16, full page 4,8
Burst terminate Yes Yes No
command
Partial array self-refresh No Full, 1/2,1/4, 1/8, No
1/16
Temperature-compen- No Supported No
sated self-refresh
Deep power-down No Supported No

access has an associated read and write latency. Burst operations are always available with
synchronous memory, but the same can’t be said of asynchronous memory.

The asynchronous bus of today has evolved from buses that were popular in the past, such as
IBM’s Industry Standard Architecture (ISA) bus. Asynchronous devices come in many differ-
ent flavors. The most common include Static RAM (SRAM), which is volatile, and nonvolatile
memories like PROM and Flash. SRAM can substitute for the pricier SDRAM when high per-
formance isn’t required.

Processors that have an asynchronous memory controller (AMC) typically share its data and
address pins with the SDRAM controller. As we mentioned earlier, because DDR has much
tighter capacitive loading requirements, an AMC would not share pins with a DDR controller.

A characteristic AMC is shown in Figure 5.14. It contains read- and write-enable pins that can
interface to memory devices. Table 5.4 shows a summary of the common AMC pins. Several

Memory Systems 205

DATA [15:0] [«—>| DATA [15:0]
ADDR [19:1]—»| ADDR [19:1]
ABE [1:0 » ABE [1:0
Asynchronous [1:0] N —[]
AMS » AMS
Processor| Memory ARDY B ARDY SRAM
Controller ———= —
> OF
ARE » RE
AWE » WE

Figure 5.14: A typical asynchronous memory controller (AMC).

Table 5.4: Typical AMC pins.

ADDR External address bus (outputs)

DATA External data bus (inputs/outputs)

AMS Asynchronous memory selects (outputs)
AWE Asynchronous memory write enable (output)
ARE Asynchronous memory read enable (output)
AOE Asynchronous memory read enable (output)
ARDY Asynchronous memory ready response (input)
ABE[1:0] Byte enables (outputs)

memory-select lines allow the AMC to choose which of several connected devices it’s talking
to at a given point in time. The AMC has programmable wait states and setup/hold timing for
each connected device, to accommodate a wide array of asynchronous memories.

The AMC is especially useful because, in addition to interfacing with memory devices, it
allows connection to many other types of components. For example, FIFOs and FPGAs eas-
ily map to an asynchronous bank. Chip sets for USB and Ethernet, as well as bridges to many
other popular peripherals, also easily interface to the asynchronous memory interface.

When connecting a nonmemory device to an AMC, it is always best to use a DMA channel to
move data into and out of the device, especially when the interface is shared with SDRAM.
Access to these types of components usually consumes multiple system clock cycles, whereas
an SDRAM access can occur in a single system clock cycle. Be aware that, when the AMC
and SDC share the same L3 memory bus, slow accesses on an asynchronous bank could hold
off access to a SDRAM bank considerably.

Synchronous random access memory (synchronous SRAM) is also available for higher per-
formance than traditional SRAMs provide, at increased cost. Synchronous SRAM devices are
capable of either pipelined or flow-through functionality. These devices take the asynchronous
devices one step closer to SDRAM by providing a burst capability.

206 Chapter 5

Whereas synchronous SRAM provides for higher performance than ordinary SRAM, other tech-
nologies allow for lower power. Pseudo-SRAM (and a variant called CellularRAM) connect to

a processor via an SDRAM-like interface. Additionally, they sport an I/O supply requirement in
line with other processor I/O (2.5V or 3.3V, for instance) while powering the Vcc supply of the
memory itself at 1.8 V. This presents a good compromise that allows processors to take advan-
tage of some power savings even when they don’t have 1.8 V-capable I/O.

Figure 5.15 shows a high-level view comparing several representative types of external mem-
ory from the dual standpoints of performance and capacity.

1000

Capacity (Mbits)

Figure 5.15: External memory comparison of performance and capacity.

5.4.3 Nonvolatile Memories

Nonvolatile memories—memories that retain their contents even when not powered—come in
several forms. The simplest, a ROM (read-only memory), is written once (at the factory) but
can be read many times. A PROM, or Programmable ROM, also can only be written once, but
this can be done in the field, not just at the time of manufacture. An erasable PROM (EPROM)
can be reprogrammed after erasing its contents via ultraviolet light exposure. An electrically
erasable PROM (EEPROM), commonly used today, needs only electricity for erasure. A Flash

Memory Systems 207

EEPROM takes this technology one step further by allowing data to be stored and erased in
blocks, rather than in byte-sized increments. This significantly speeds up access rates to Flash
memories compared with regular EEPROM access times. Finally, a burst-mode Flash sharply
reduces read access times for sequential bytes by adding a few extra control pins to the stand-

ard Flash interface.

5.4.3.1 NAND and NOR Flash Memories

The two main types of nonvolatile Flash memory widely used today are NOR-based and
NAND-based. There are many differences between these two technologies, each of which is
optimal for certain classes of use. Table 5.5 gives a rundown of their major characteristics.

Table 5.5: Summary of NOR and NAND Flash characteristics.

Trait NOR Flash NAND Flash

Capacity/bit density Low (<64 MB) High (16-512MB)

Directly execute code from? Yes No

Erase performance Very slow (5 sec) Fast (3 ms)

Write performance Slow Fast

Read performance Fast Medium

Reliability oK Low; requires error checking and

bad-block checking

Erase cycles 10K-100K 100-1000K

Life span OK Excellent (10X NOR)

Interface ISA-like/MCU-friendly; (Addr + 1/0O only (command sequence)
Data + Control), Serial
(SPlor12C)

Pin count High Low

Access method Random Sequential

Ease-of-use Easy; memory-mapped address + | Difficult (file system needed)
data scheme
Cost/bit High Low

Primary usage

Low-density, high-speed code
access, some data storage

High-density data block storage

Bootable?

Yes

Not generally

Power/Energy Dissipation

Higher (due to long program and
erase cycles)

Lower

Fundamentally, NAND and NOR Flash technologies differ in the structure of their respec-
tive memory cell arrays. In NOR devices, memory cells are connected in parallel between a
bit line and ground, such that selecting any number of memory cells can end up grounding
a bit line. Because this is similar to a wired-OR configuration, it is termed NOR Flash. This

208 Chapter 5

arrangement enables very fast read times and thus makes NOR Flash a good candidate for ran-
dom access—a trait associated with processor code.

NAND realizes a more efficient cell architecture that results in only about half the space taken
by a NOR cell. However, this space-saving layout connects memory cells in series, sharing
bit-select lines across several cells. To ground a bit line, an entire group of memory cells must
be turned on simultaneously. This makes NAND Flashes a poor choice for random accesses,
but it provides excellent cell compactness. What’s more, it allows several NAND cells to

be programmed simultaneously, providing very fast write performance compared to NOR
devices.

NOR Flash holds the edge in read access speed, but NAND is superior in programming and
erasing speeds. Erase time is especially crucial because Flash devices must all be erased (each
bit set to 1) before programming occurs (selectively setting bits back to 0). Therefore, erasing
is an integral part of writing to a Flash device. Moreover, NAND Flashes can tolerate many
more erase cycles than NOR Flashes can, usually on the order of tenfold, thus providing much
longer life spans than NOR devices.

One intricacy of NAND Flashes is that a file system is necessary to use them. This is because,
to maintain high yields, NAND Flashes are shipped with randomly located bad blocks. It is
the job of the file system (running on the embedded processor) to find these bad blocks, tag
them, and avoid using them. Usually, the memory vendor has already scanned and marked the
bad blocks at the factory, and the file system just needs to maintain a table of where these are
located, keeping in mind that some additional bad blocks will be formed over the lifetime of
the part. The good news is that because each block is independent of all others, the failure of
one block has no impact on the operation of others.

As it turns out, NOR Flash can also have bad blocks, but manufacturers typically allocate
extra blocks on the chip to substitute for any bad blocks discovered during factory tests.
NAND has no such spare blocks because it’s assumed that a file system is necessary anyway
for the mass storage systems of which NAND devices are a part.

As another consideration, NAND is somewhat prone to bit errors due to periodic program-
ming (one bit error out of every 10 billion bits programmed). Therefore, error-correcting codes
(Hamming codes, usually) are employed by the file system to detect and correct bit errors.

As far as processor interface, NOR devices have a couple of options. For one, they hook
directly up to the asynchronous memory controller of microprocessors, with the conventional
address and data bus lines as well as write/read/select control. Depending on the address space
desired, this interface can encompass a large number of pins. As a slower, lower pin-count
alternative, serial Flash devices can connect through just a few wires via an SPI or I°C inter-
face. Here, the address and data are multiplexed on the serial bus to achieve memory access
rates only a fraction of those attainable using parallel address/data buses.

Memory Systems 209

Interfacing to NAND devices is more complex and occurs indirectly, requiring a sequence of
commands on the 8-bit bus to internal command and address registers. Data is then accessed
in pages, usually around 528 bytes in length. Although this indirect interface makes NAND
unsuitable for booting, this approach provides a fixed, low pin-count interface that remains
static as higher-density devices are substituted. In this respect (and many others), NAND Flash
acts like a conventional hard disk drive. This accounts for the similar structure and access
characteristics between the two storage technologies.

In fact, NAND Flash devices were specifically intended to replace magnetic hard disk drives
in many embedded applications. To their advantage, they are solid-state devices, meaning that
they have no moving parts. This leads to more rugged, reliable devices than magnetic disk
drives, as well as much less power dissipation.

NAND flash serves as the basis for all of the most popular removable solid-state mass storage
cards: CompactFlash, SmartMedia, Secure Digital/Multimedia Card (SD/MMC), Extreme
Digital Picture Card (xD), MemoryStick, and the like. With the exception of SmartMedia, all
these cards have built-in controllers that simplify access to the NAND memory on the device.
These products find wide use in consumer electronics (like cameras, PDAs, cell phones, etc.)
and other embedded applications requiring mass storage. Table 5.6 provides a high-level com-
parison of these storage cards.

Devices like SD, MemoryStick, and CompactFlash also have an I/O layer, which makes them
quite attractive as interfaces on embedded processors. They enable a wide range of peripherals
through these interfaces, including Bluetooth, 802.11b, Ethernet transceivers, modems, FM
radio, and the like.

5.4.3.2 Hard Disk Storage: IDE, ATA, and ATAPI

The terms IDE and ATA actually refer to the same general interface, but they mean different
things, and people often get confused and use the terms interchangeably. For simplicity, we’ll
just refer to the interface as ATA or ATAPI, as explained below.

IDE is short for Integrated Drive Electronics, which refers to a pivotal point in the PC storage
market when the disk drive controllers were integrated directly on the hard disk itself, rather
than as a separate board inside the PC. This reduced the cost of the interface and increased
reliability considerably. IDE drives can support a master and a slave device on each IDE
channel.

ATA stands for AT Attachment, dating back to the days of the IBM PC/AT. It describes a device
interface for hooking up to hard disk drives. ATAPI stands for ATA Packet Interface, which
specifies a way to hook up to CD-ROM, DVD and tape drives, which communicate by means of
packetized commands and data. Although the packet layer of ATAPI adds considerable complex-
ity, it still maintains the same electrical interface as ATA. ATA is such a ubiquitous standard for

3
3
h
=
o
g
=
o
[
O
=
o
n
n
o
o
3

Table 5.6: Storage card comparison.

Sanish 2
Sandisk 2
SmartMedia MMC CompactFlash | Secure Digital MemoryStick xD TransFlash/
(SD) Micro SD
Developer Toshiba Infineon, SanDisk SanDisk SanDisk, Sony (later with Fujifilm, SanDisk,
Panasonic, SanDisk) Olympus Motorola
Toshiba
Variants MMCplus, Mini-SD MemoryStick,
HS-MMC ProMemorysStick,
(High Speed), DuoMemory
RS-MMC Stick Pro Duo
(Reduced Size),
SecureMMC
MMCmobile
Volume (mm?) 1265 1075605 5141 (Type I) 1613 (SD) 3010992 (Duo 850 165
(RS-MMC, 7790 (Type Il) | 602 (mini-SD) | and Pro Duo)
MMCmobile)
Weight (g) 2 1.5 11.4 2 (1 for 4 (2 for Duo & 2 0.4

mini-SD)

Pro Duo)

olLc

§ 4323dpy>

3
3
g
3
o
3
3
o
n
-
=
o
n
n
o
o
3

Interface pins 22 7-13 50 9 10 18 8
Present capacity | 128 MB 1GB 8GB 2GB (1GB 128MB 4GB (Pro| 1GB 512MB
for mini-SD) and Pro Duo)
Content security | ID copy Depends on No CPRM, SD MagicGate ID copy CPRM, SD
protection variant protection
Max data 1MB/s Write, Up to 52MB/s 66 MB/s 1T0MB/s 1.8 MB/s Write, 3MB/s 1.8 MB/s
transfer rate 3.5MB/s Read | (dependson 2.5MB/s Read, Write, typical
variant) 20 MB/s (Pro and 5MB/s
Pro Duo) Read
Comments No on-board Small form factor, | IDE- Mini-SD has Mostly Sony Adapters bridges
controller, compatible with compatible adapter to fit products, sup- available between
limited SD interfaces SD card slot ports real-time to other embedded
capacity DVD-quality card types and remova-
video transfer ble memory
worlds
1/O capability? No No Yes Yes Yes No No
Voltage 3.3V/5V 3.3V (1.8V/3.3V 3.3V/5V 3.3V 3.3V 3.3V 3.3V
for MMCplus and
MMCmobile)
Interface 8-bit I/O SPI, MMC IDE SPI, SD MemoryStick NAND SPI, SD
Flash

swiagsAs Kiowapy

Lic

212 Chapter 5

mass storage (dwarfing SCSI, for instance) that ATA-compliant storage has found its way into
the PC-MCIA and CompactFlash worlds as well.

The ATA interface specifies the way commands are passed through to the hard drive control-
ler, interpreted, and processed. The interface consists of eight basic registers: seven are used
by the processor’s I/0 subsystem to set up a read or write access, and the eighth one is used to
perform block reads/writes in 512-byte chunks called sectors. Each sector has 256 words, and
each access utilizes a 16-bit data bus.

The original scheme for addressing drive data followed a CHS method of accessing a particu-
lar cylinder, head, and sector (CHS) of the hard disk. A more intuitive mode known as logical
block addressing (LBA), in which each sector on a hard disk has its own unique identification
number, was soon added. LBA led the way toward breaking through the 8 GB addressing bar-
rier inherent in the CHS approach (which allows for only 1,024 cylinders, 256 heads, and 63
sectors).

ATA lays down timing requirements for control and data accesses. It offers two modes of data
access—Programmed I/0 (PIO) and DMA—each offering various levels of performance. PIO
modes operate in analogous fashion to direct processor accesses to the hard drive. That is, the
processor has to schedule time out of what it’s doing to set up and complete a data processing
cycle. DMA modes, on the other hand, allow data transfer between the drive and processor
memory to occur without core intervention. The term Ultra DMA refers to higher-perform-
ance levels of DMA that involve double-edge clocking, where data is transferred on both the
rising and falling edges of the clock. Ultra DMA usually requires an 80-conductor IDE cable
(instead of the standard 40-pin one for parallel ATA drives) for better noise immunity at the
higher transfer rates, and it also incorporates cyclical redundancy checking (CRC) for error
reduction.

Table 5.7 lists the several different levels of ATA, starting with ATA-1 and extending to ATA/
ATAPI-7, which is still under development. At Level 4, ATAPI was introduced, so every level
from 4 onward is designated ATA/ATAPI. The levels differ mainly in I/O transfer rates, DMA
capability, and reliability. All new drives at a given ATA level are supposed to be backward-
compatible to the previous ATA levels.

5.4.3.3 Other Hard Drive Interfaces

SATA

Serial ATA (SATA) is a follow-on to ATA that serializes the parallel ATA data interface, thus
reducing electrical noise and increasing performance while allowing for longer, skinnier
cabling. SATA uses differential signaling at very high clock rates to achieve data transfer rates
of several hundred megabytes per second. SATA sheds the legacy 5V power supply baggage
that parallel ATA carries, and its differential signaling operates in the range of 200-300mV.
More good news: It’s software-compatible with parallel ATA. This allows simple

Memory Systems 213

Table 5.7 ATAPI summary.

ATA Version Max PIO Max DMA Added Features
Transfer Rate | Transfer Rate
(MB/s) (MB/s)

ATA-1 8.3 8.3 Original standard for IDE drives

ATA-2 16.7 16.7 Logical Block Addressing
Block Transfers

ATA-3 16.7 16.7 Improved reliability, Drive security, SMART
(self-monitoring)

ATA/ATAPI-4 16.7 33.3 Packet Interface extension. Ultra DMA (80-conductor
ribbon cable), CRC error checking and correction

ATA/ATAPI-5 16.7 66.7 Faster Ultra DMA transfer modes

ATA/ATAPI-6 16.7 100 Support for drives larger than 137 GB

ATA/ATAPI-7 16.7 133 SATA and DVR support

SATA-to-parallel-ATA converters to translate between the two technologies in the near term,
without disturbing the software layer underneath the different physical layers. On the downside,
SATA allows only for point-to-point connections between a controller and a device, although
external port multipliers are available to effect a point-to-multipoint scheme.

SATA is targeted primarily at the PC market, to improve reliability and increase data transfer
speeds. It will slowly make its way into embedded applications, first targeting those systems
where the storage density of solid state flash cards isn’t adequate, leaving parallel or serial
ATA as the only options. But as flash card densities grow into the several-Gbyte range, they
will maintain a firm foothold in a wide swath of embedded applications due to the increased
reliability of their solid-state nature and their small form factors.

SCsl

SCSI stands for Small Computer Systems Interface, a high-end interconnect that outperforms
ATA but is also much more complex. It offers expandability to many more devices than ATA
and has a feature set geared toward higher performance. SCSI is more expensive than ATA for
the same storage capacity, and it’s typically the realm of niche applications, not very popular
in the embedded world.

Microdrive

The Microdrive is an actual miniature hard disk in a CompactFlash Type II form fac-

tor. Invented by IBM, the product line is now owned and propagated by Hitachi. Whereas
CompactFlash is a solid-state memory, Microdrives are modeled after conventional magneti-
cally based hard drives, with tiny spinning platters. For this reason, they are not as rugged and
reliable as CompactFlash memory, and they also consume more power. Currently they are
available at capacities up to several gigabytes.

214 Chapter 5

USB/Firewire

These drives are nothing more than Parallel ATA disk drives with a USB 2.0 high-speed or
Firewire (IEEE 1394) front end, usually used to facilitate access to a PC. However, in the
embedded world, where USB and Firewire are gaining traction, these interfaces provide a
handy way to add storage to a system.

USB pen drives, also called keychain drives, are not related to these ATA drives. Instead, they
are Flash memory devices with a USB front end, similar in all respects to the NAND memory
devices described previously.

5.4.3.4 Emerging Nonvolatile Memory Technologies

There are some exciting new technologies on the horizon that will probably be very important
in high-performance embedded applications. Two of particular interest are FRAM and MRAM.
FRAM, or Ferroelectric RAM, uses electric field orientation to store charge. This gives it almost
infinite write capability. By comparison, conventional EEPROMs can only be written on the
order of 10,000 times. MRAM, or Magnetoresistive RAM, uses electron spin to store informa-
tion. It represents the best of several memory domains: it’s nonvolatile, it has bit densities rival-
ing DRAM, and it operates at SRAM-like speeds.

5.5 Direct Memory Access

The processor core is capable of doing multiple operations, including calculations, data
fetches, data stores, and pointer increments/decrements, in a single cycle. In addition, the core
can orchestrate data transfer between internal and external memory spaces by moving data
into and out of the register file.

All this sounds great, but in reality you can only achieve optimum performance in your appli-
cation if data can move around without constantly bothering the core to perform the transfers.

This is where a direct memory access (DMA) controller comes into play. Processors need
DMA capability to relieve the core from these transfers between internal/external memory
and peripherals or between memory spaces. There are two main types of DMA controllers.
“Cycle-stealing” DMA uses spare (idle) core cycles to perform data transfers. This is not a
workable solution for systems with heavy processing loads like multimedia flows.

Instead, it is much more efficient to employ a DMA controller that operates independently
from the core.

Why is this so important? Well, imagine if a processor’s video port has a FIFO that needs to
be read every time a data sample is available. In this case, the core has to be interrupted tens of
millions of times each second. As though that’s not disruptive enough, the core has to perform
an equal amount of writes to some destination in memory. For every core processing cycle
spent on this task, a corresponding cycle would be lost in the processing loop.

Memory Systems 215

We know from experience that PC-based software designers transitioning to the embedded
world are hesitant to rely on a DMA controller for moving data around in an application. This
usually stems from their impression that the complexity of the programming model increases
exponentially when DMA is factored in. Yes, it is true that a DMA controller adds another
dimension to your solution. We will, in fact, explore some intricacies that DMA introduces—
such as contention for shared resources and new challenges in maintaining coherency between
data buffers. Our goal, however, is to put your mind at ease, to show you how DMA is truly
your friend. In this chapter, we’ll focus on the DMA controller itself.

5.5.1 DMA Controller Overview

Because you’ll typically configure a DMA controller during code initialization, the core should
only need to respond to interrupts after data set transfers are complete. You can program the
DMA controller to move data in parallel with the core while the core is doing its basic process-
ing tasks—the jobs on which it’s supposed to be focused! In an optimized application, the core
would never have to move any data but rather only access it in L1 memory. The core wouldn’t
need to wait for data to arrive, because the DMA engine would have already made it available
by the time the core was ready to access it. Figure 5.16 shows a typical interaction between

the processor and the DMA controller. The steps allocated to the processor involve setting up
the transfer, enabling interrupts, and running code when an interrupt is generated. The dashed
lines/arrows between memory and the peripheral indicate operations the DMA controller makes
to move data independent of the processor. Finally, the interrupt input back to the processor can
be used to signal that data is ready for processing.

Respond to
Interrupts‘

Processor - Inte _r[upt h _a _n_d_l(_a_r -

Core Setup
A M» Descriptor list > DMA
Buffer < ’7

A

Process data Move data | Peripheral [¢+—» Data
independent Source
of core

Internal memory

Figure 5.16: DMA controller.

In addition to moving to and from peripherals, data also needs to move from one memory space
to another. For example, source video might flow from a video port straight to L3 memory,
because the working buffer size is too large to fit into internal memory. We don’t want to make
the processor fetch pixels from external memory every time we need to perform a calculation,

216 Chapter 5

so a memory-to-memory DMA (MemDMA for short) can bring pixels into L1 or L2 memory
for more efficient access times. Figure 5.17 shows some typical DMA data flows.

Memory Peripheral
@
» DMA »> —
FIFO
Memory Peripheral
(b)
DMA |« ——
FIFO
Memory Memory
()
» DMA >

Figure 5.17: Typical DMA flows.

So far we’ve focused on data movement, but a DMA transfer doesn’t always have to involve
data. We can use code overlays to improve performance, configuring the DMA controller to
move code into L1 instruction memory before execution. The code is usually staged in larger
external memory.

In this chapter, we will use the Blackfin processor’s DMA controller as a model to illustrate
the basic concepts of direct memory access and how it can boost system performance. We will
also offer some helpful ways to manage the DMA controller and review examples of “two-
dimensional” transfers that can save valuable data passes by markedly reducing the time an
application spends traversing a data buffer.

5.5.2 More on the DMA Controller

A DMA controller is a unique peripheral devoted to moving data around a system. Think of it as
a controller that connects internal and external memories with each DM A-capable peripheral via

Memory Systems 217

a set of dedicated buses. It is a peripheral in the sense that the processor programs it to perform
transfers. It is unique in that it interfaces to both memory and selected peripherals. Notably, only
peripherals where data flow is significant (kbytes per second or greater) need to be DMA-capa-
ble. Good examples of these are video, audio, and network interfaces. Lower-bandwidth periph-
erals can also be equipped with DMA capability, but it’s less an imposition on the core to step in
and assist with data transfer on these interfaces.

In general, DMA controllers will include an address bus, a data bus, and control registers. An
efficient DMA controller will possess the ability to request access to any resource it needs,
without having the processor itself get involved. It must have the capability to generate inter-
rupts. Finally, it has to be able to calculate addresses within the controller.

A processor might contain multiple DMA controllers. Each controller has multiple DMA
channels, as well as multiple buses that link directly to the memory banks and peripherals, as
shown in Figure 5.18. There are two types of DMA controllers in the Blackfin processor. The
first category, usually referred to as a System DMA controller, allows access to any resource
(peripherals and memory). Cycle counts for this type of controller are measured in system
clocks (SCLKs) at frequencies up to 133 MHz. The second type, an Internal Memory DMA
(IMDMA) controller, is dedicated to accesses between internal memory locations. Because
the accesses are internal (L1 to L1, L1 to L2, or L2 to L2), cycle counts are measured in core
clocks (CCLKs), which can exceed 600 MHz rates.

Figure 5.18 also shows the Blackfin DMA bus structure, where the DMA External Bus (DEB)
connects the DMA controller to external memory, the DMA Core Bus (DCB) connects the

L1 Memory

A

DMA
Core Bus

DMA Y DMA Peripheral

System Bus Access Bus
L2 Memory > DMA

Controller

7 Peripheral

DMA
Processor External Bus

A 4

L3 Memory

Figure 5.18: System and internal memory DMA architecture.

218 Chapter 5

controller to internal memory, and the DMA Access Bus (DAB) connects to the peripherals.
An additional DMA bus set is also available when L2 memory is present, to move data within
the processor’s internal memory spaces.

Each DMA channel on a Blackfin DMA controller has a programmable priority associated with
it. If more than one channel requests the DMA bus in a single cycle, the highest-priority chan-
nel wins access. For memory DMA channels, a “round robin” access capability exists. That is,
one memory channel can access the bus for a programmable number of cycles before turning the
bus over to the next MemDMA channel, which also gets the same number of cycles on the bus.
When more than one DMA controller is present on a processor, the channels from one controller
can run at the same time as channels on the other controller. This is possible, for example, when
a memory-to-memory transfer takes place from L3 to L2 memory while the second controller
feeds a peripheral from L1 memory. If both DMA controllers try to access the same resource
(L3 memory, for example), arbitration must take place. In this case, one of the controllers can be
programmed to a higher priority than the other.

Each DMA controller has a set of FIFOs that act as a buffer between the DMA subsystem and
peripherals or memory. For MemDMA, a FIFO exists on both the source and destination sides
of the transfer. The FIFO improves performance by providing a place to hold data while busy
resources are preventing a transfer from completing.

5.5.3 Programming the DMA Controller

Let’s take a look at the options we have in specifying DMA activity. We will start with the
simplest model and build up to more flexible models that, in turn, increase in setup
complexity.

For any type of DMA transfer, we always need to specify starting source and destination
addresses for data. In the case of a peripheral DMA, the peripheral’s FIFO serves as either the
source or the destination. When the peripheral serves as the source, a memory location (inter-
nal or external) serves as the destination address. When the peripheral serves as the destina-
tion, a memory location (internal or external) serves as the source address.

In the simplest MemDMA case, we need to tell the DMA controller the source address, the
destination address and the number of words to transfer. With a peripheral DMA, we specify
either the source or the destination, depending on the direction of the transfer. The word size
of each transfer can be 8, 16, or 32 bits. This type of transaction represents a simple one-
dimensional (1D) transfer with a unity “stride.” As part of this transfer, the DMA controller
keeps track of the source and destination addresses as they increment. With a unity stride, as
in Figure 5.19a, the address increments by 1 byte for 8-bit transfers, 2 bytes for 16-bit trans-
fers, and 4 bytes for 32-bit transfers.

Memory Systems 219

We can add more flexibility to a one-dimensional DMA simply by changing the stride, as in
Figure 5.19b. For example, with nonunity strides, we can skip addresses in multiples of the

transfer sizes. That is, specifying a 32-bit transfer and striding by four samples results in an

address increment of 16 bytes (four 32-bit words) after each transfer.

Couching this discussion in Blackfin DMA controller lingo, we have now described the opera-
tions of the XCOUNT and XMODIFY registers. XCOUNT is the number of transfers that need to
be made. Note that this is not necessarily the same as the number of bytes to transfer. XMODIFY
is the number of bytes to increment the address pointer after the DMA controller moves the

first data element. Regardless of the transfer word size, XMODIFY is always expressed in bytes.
XMODIFY can also take on the value of 0, which has its own advantage, as we’ll see later in this
chapter.

Whereas the 1D DMA capability is widely used, the two-dimensional (2D) capability is even
more useful, especially in video applications. The 2D feature is a direct extension to what we
discussed for 1D DMA. In addition to an XCOUNT and XMODIFY value, we also program cor-
responding YCOUNT and YMODIFY values. It is easiest to think of the 2D DMA as a nested
loop, where the inner loop is specified by XCOUNT and XMODIFY, and the outer loop is

Source Destination

1D DMA
Unity Stride

Figure 5.19: 1D DMA examples.
(a) 1D DMA with unity stride.

220 Chapter 5

Source Destination

(b)

1D DMA
Non-unity
Stride

Figure 5.19: (Continued)
(b) 1D DMA with nonunity stride.

specified by YCOUNT and YMODIFY. A 1D DMA can then be viewed simply as an “inner
loop” of the 2D transfer of the form:

for y = 1 to YCOUNT STEP YMODIFY /* 2D with outer loop */
1 to XCOUNT STEP XMODIFY /* 1D inner loop */

{

/*Loop goes here */

}

While XMODIFY determines the stride value the DMA controller takes every time XCOUNT
decrements, YMODIFY determines the stride taken whenever YCOUNT decrements. As is the
case with XCOUNT and XMODIFY, YCOUNT is specified in terms of the number of transfers,
while YMODIFY is specified as a number of bytes. Notably, YMODIFY can be negative, which
allows the DMA controller to wrap back around to the beginning of the buffer. We’ll explore
this feature shortly.

for x

For a peripheral DMA, the “memory side” of the transfer can be either 1D or 2D. On the periph-
eral side, though, it is always a 1D transfer. The only constraint is that the total number of bytes
transferred on each side (source and destination) of the DMA must be the same. For example, if
we were feeding a peripheral from three 10-byte buffers, the peripheral would have to be set to
transfer 30 bytes using any possible combination of supported transfer width and transfer count
values available.

Memory Systems 221

Memory

(@)

Memory

(b)

Memory

Memory

1Dto 1D

2D to 1D
s

S

2D to 2D
—

Memory

Memory

Memory

Memory

Figure 5.20: Possible Memory DMA configurations.

MemDMA offers a bit more flexibility. For example, we can set up a 1D-to-1D transfer, a 1D-
to-2D transfer, a 2D-to-1D transfer, and of course a 2D-to-2D transfer, as shown in Figure 5.20.
The only constraint is that the total number of bytes being transferred on each end of the DMA

transfer block has to be the same.

222 Chapter 5

Let’s now look at some DMA transfer examples:

Example 5.1

Consider a 4-pixel (per line) X 5-line array, with byte-sized pixel values, ordered as
shown in Figure 5.21a.

(a) (b) (c)

Ox1 0x2 0x3 Ox4 | | Address Data | | g1 x1 0x1 0x1 Ox1
0x1 Ox2 0x3 Ox4 0 0x1
0x1 0x2 0x3 Ox4 1 0x2 0x2 0x2 0x2 Ox2 0x2
Ox1 0x2 0x3 0x4 2 0x3 0x3 0x3 0x3 0x3 0x3
0x1 Ox2 0x3 Ox4 3 0x4 0x4 0x4 0x4 0x4 0x4

4 0x1

5 0x2

6 0x3

7 0x4

14 0x3

15 0x4

Figure 5.21: Source and destination arrays for Example 5.1.

While this data is shown as a matrix, it appears consecutively in memory as shown in
Figure 5.21b.

We now want to create the array shown in Figure 5.21c using the DMA controller.

The source and destination DMA register settings for this transfer are:

Source Destination
XCOUNT = 5§ XCOUNT = 20
XMODIFY = 4 XMODIFY =1
YCOUNT = 4 YCOUNT = 0
YMODIFY = —15 YMODIFY =0

Source and destination word transfer size = 1 byte per transfer.

Let’s walk through the process. In this example, we can use a MemDMA with a 2D-to-1D
transfer configuration. Since the source is 2D, it should be clear that the source channel’s

Memory Systems 223

XCOUNT and YCOUNT are 5 and 4, respectively, since the array size is 5 lines X 4 pixels/
line. Because we will use a 1D transfer to fill the destination buffer, we only need to pro-
gram XCOUNT and XMODIFY on the destination side. In this case, the value of XCOUNT is
set to 20, because that is the number of bytes that will be transferred. The YCOUNT value
for the destination side is simply 0, and YMODIFY is also 0. You can see that the count
values obey the rule we discussed earlier (e.g., 4 X 5 = 20 bytes).

Now let’s talk about the correct values for XMODIFY and YMODIFY for the source buffer.
We want to take the first value (0x1) and skip 4 bytes to the next value of Ox1. We will
repeat this five times (Source XCOUNT = 5). The value of the source XMODIFY is 4, because
that is the number of bytes the controller skips over to get to the next pixel (including the
first pixel). XCOUNT decrements by 1 every time a pixel is collected. When the DMA control-
ler reaches the end of the first row, XCOUNT decrements to 0, and YCOUNT decrements by

1. The value of YMODIFY on the source side then needs to bring the address pointer
back to the second element in the array (0x2). At the instant this happens, the address
pointer is still pointing to the last element in the first row (0x1). Counting back from
that point in the array to the second pixel in the first row, we traverse back by 15 ele-
ments. Therefore, the source YMODIFY = —15.

If the core carried out this transfer without the aid of a DMA controller, it would consume
valuable cycles to read and write each pixel. Additionally, it would have to keep track of the

addresses on the source and destination sides, tracking the stride values with each transfer.

Here’s a more complex example involving a 2D-to-2D transfer:

Example 5.2

Let’s assume now we start with the array that has a border of OxFF values, shown in
Figure 3.7.

2D-to-2D DMA
Source Array

OxFF OxFF OXFF OxFF OxFF OxFF Destination Array

FF 1 2 4 OxFF
[0} 0x1 0x2 0x3 Ox X 0xD 0x9 0x5 Ox1

OxFF 0x5 O0x6 O0x7 O0x8 OxFF I OXE OxA 0x6 0x2
OxFF 0x9 OxA 0xB 0xC OxFF OxF 0xB 0x7 0x3
OXFF 0xD OXE OXF 0x10 OxFF 0x10 0xC 0x8 Ox4

OxFF OxFF OxFF OxFF OxFF OxFF

Figure 5.22: Source and destination arrays for Example 5.2.

224 Chapter 5

We want to keep only the inner square of the source matrix (shown in bold), but we also
want to rotate the matrix 90 degrees, as shown in Figure 5.22.

The register settings below will produce the transformation shown in this example, and
now we will explain why.

Source Destination
XCOUNT = 4 XCOUNT = 4
XMODIFY =1 XMODIFY =4
YCOUNT = 4 YCOUNT = 4
YMODIFY =3 YMODIFY = —13

As a first step, we need to determine how to access data in the source array. As the DMA
controller reads each byte from the source array, the destination builds the output array
1 byte at a time.

How do we get started? Well, let’s look at the first byte that we want to move in the
input array. It is shown in italics as 0x1. This will help us select the start address of the
source buffer. We then want to sequentially read the next three bytes before we skip over
the “border” bytes. The transfer size is assumed to be 1 byte for this example.

Because the controller reads 4 bytes in a row before skipping over some bytes to move
to the next line in the array, the source XCOUNT is 4. Because the controller increments
the address by 1 as it collects 0x2, 0x3, and 0x4, the source XMODIFY = 1. When the
controller finishes the first line, the source YCOUNT decrements by 1. Since we are trans-
ferring four lines, the source YCOUNT = 4. Finally, the source YMODIFY = 3, because as
we discussed earlier, the address pointer does not increment by XMODIFY after XCOUNT
goes from 1 to 0. Setting YMODIFY = 3 ensures the next fetch will be 0x5.

On the destination side of the transfer, we will again program the location of the Ox7 byte
as the initial destination address. Since the second byte fetched from the source address
was 0x2, the controller will need to write this value to the destination address next. As
you can in see in the destination array in Figure 5.22, the destination address has to first
be incremented by 4, which defines the destination XMODIFY value. Since the destina-
tion array is 4 X 4 in size, the values of both the destination XCOUNT and YCOUNT are 4.
The only value left is the destination YMODIFY. To calculate this value, we must compute
how many bytes the destination address moves back in the array. After the destination
YCOUNT decrements for the first time, the destination address is pointing to the value
0x4. The resulting destination YMODIFY value of —13 will ensure that a value of 0x5 is
written to the desired location in the destination buffer.

Memory Systems 225

For some applications, it is desirable to split data between both cores. The DMA
controller can be configured to spool data to different memory spaces for the most efficient
processing.

Example 5.3

Consider when the processor is connected to a dual-channel sensor that multiplexes
alternating video samples into a single output stream. In this example, each channel
transfers four 8-bit samples packed as a 32-bit word. The samples are arranged such
that a “packed” sample from Channel 2 follows a “packed” sample from Channel 1, and
so on, as shown in Figure 5.22. Here the peripheral serves as the source of the DMA, and
L2 memory serves as the destination. We want to spread the data out in L2 memory to
take advantage of its internal bank structures, as this will consequently allow the proces-
sor and the DMA controller access to different banks simultaneously.

Sensor 1 Sensor 1

Buffer — Processor A

Sensor 1 Sensor 2 Sensor 1
Pixel 2 Pixel 1 Pixel 1

Sensor 2 t=2 t=1 t=0

Sgn?fo rr2 —» Processor B
< Time t utte

Note: Sensor 1 and Sensor 2 buffers reside in different L2 Memory

sub-banks of L2 Memory

Figure 5.23: Multiplexed stream from two sensors.

Because a sample is sent from each sensor, we set the destination XCOUNT to 2 (one word
each from Sensor 1 and Sensor 2). The value of XMODIFY is set to the separation distance
of the sensor buffers, in bytes. The controller will then write the first 4 bytes to the beginning
of Sensor 1 buffer, skip XMODIFY bytes, and write the first 4 bytes of Sensor 2 buffer. The
value of YCOUNT is based on the number of transfers required for each line. For a QVGA-
sized image, that would be 320 pixels per line X 2 bytes per pixel / 4 bytes per transfer, or
160 transfers per line. The value of YMODIFY depends on the separation of the two buffers.
In this example, it would be negative (buffer separation + number of line transfers - 1, which
already accounts for the fact that the pointer doesn’t increment when XCOUNT goes to 0).

226 Chapter 5

Earlier, we mentioned that it’s useful in some applications to set XMODIFY to 0. A short
example will illustrate this concept.

Example 5.4

Consider the case where we want to zero-fill a large section—say, 1024 bytes—of L3
memory. To do so, we can first create a 32-bit buffer in internal memory that contains
all zeros, and then perform core writes to the block of external memory, but then the
core would not be available to do more useful tasks.

So why not use a simple 1D DMA instead? In this case, if we assume a 32-bit word trans-
fer size, the XCOUNT values for the source and destination are (1024 bytes/4 bytes per
transfer), or simply 256 transfers. The XMODIFY value for the destination will be 4 bytes.
The source value of XMODIFY can be set to O to ensure that the address of the source
pointer stays on the same 32-bit word in the source buffer, meaning that only a single
32-bit “zero word” is needed in L1 memory. This will cause the source side of the DMA to
continually fetch the value of 0x0000 from the same L1 location, which is subsequently
written to the buffer in external memory.

The previous examples show how the DMA controller can move data around without bothering
the core to calculate the source and destination addresses. Everything we have shown so far can
be accomplished by programming the DMA controller at system initialization.

The next example will provide some insight into implications of transfer sizes in a DMA oper-
ation. The DMA bus structure consists of individual buses that are either 16- or 32-bits wide.
When 8-bit data is not packed into 16-bit or 32-bit words (by either the memory or peripheral
subsystems), some portion of the bus in question goes unused. Example 5.5 considers the sce-
nario where a video port sends 8-bit YCbCr data straight into L2 memory. (Don’t worry if you
are not too familiar with the term YCbCr—you will be after reading Chapter 6!).

Example 5.5

Assume we have Field 1 of'a 4:2:2 YCbCr video buffer in L2 memory as shown in

Figure 5.24a. We would like to separate the data into discrete Y, Cb and Cr buffers in L3
memory where we can fit the entire field of data, since L2 memory can’t hold the entire
field for large image sizes. The peripheral sends data to L2 memory in the same order
in which the camera sends it. Because there is no re-ordering of the data on the first
pass into L2 memory, the word transfer size should be maximized (e.g., to 32 bits). This
ensures that the best performance is achieved when the data enters the processor.

Memory Systems 227

(a) (b)

Address
<Blanking data> CbY CrY CbY CrY..CbY CrY 0 Yo
- e Y buffer
<Blanking data> CbY CrY CbY CrY.. CbYCry | 2" v2, |
2n + 1 Cby
. - e Cb buffer
3n Cb, 2
3n + 1 Crqy
. - Cr buffer
4n Cr,

Figure 5.24: Source and destination buffers for Example 5.5.

How should we separate the buffers? One viable option is to set up three 2D-to-1D
DMAs for each line—one each for Y, Cb, and Cr pixel components. Because the data that
needs to be separated is spread out in the array, 8-bit transfers must be used. Since there
are twice as many values of Y as there are of Cr and Cb, the XCOUNT for the source and
destination would be twice that of the Cb buffer, and twice that of the Cr buffer as well.
On the source side, XCOUNT would be the number of Y values in each line, and YCOUNT
would be the number of lines in the source buffer. This is typically some subset of a
video field size. The source XMODIFY = 2, which is the number of bytes to increment
the address to reach the next Y value. For Cb or Cr transfers, the source XMODIFY = 4.
YMODIFY is simply the number of bytes in the horizontal blanking data that precedes
each line.

The destination parameters for the Y buffer in L3 memory are much simpler. Since the
destination side of the transfer is one-dimensional, only XCOUNT and XMODIFY are
needed. The value of XCOUNT on the destination side is equal to the product of the
source XCOUNT and YCOUNT values. The XMODIFY value is simply 1.

This example is important because transfers to L3 memory are not efficient when they
are made in byte-sized increments. It is much more efficient to move data into exter-
nal memory at the maximum transfer size (typically 16 or 32 bits). As such, in this case
it is better to create new data buffers from one L2 buffer using the technique we just

228 Chapter 5

described. Once the separate buffers are created in L2 memory as shown in Figure 5.24b,
three 1D DMAs can transfer them to L3 memory. As you can see, in this case we have
created an extra pass of the data (Peripheral to L2, L2 to L3, versus Peripheral to L2 to
L3). On the surface, you may think this is something to avoid, because normally we try
to reduce data movement passes.

In reality, however, bandwidth of external memory is often more valuable than that of
internal memory. The reason the extra pass is more efficient is that the final transfer to
L3 memory can be accomplished using 32-bit transfers, which is far more efficient than
using 8-bit transfers. When doing four times as many 8-bit transfers, the number of
times the DMA bus has to change directions, as well as the number of actual transfers
on the bus, eats into total available bandwidth. You may also recall that the IMDMA
controller is available to make the intermediate pass in L2 memory, and thus the trans-
fers can be made at the CCLK rate.

5.5.4 DMA Classifications

There are two main classes of DMA transfer configuration: Register mode and Descriptor
mode. Regardless of the class of DMA, the same type of information depicted in Table 5.8
makes its way into the DMA controller. When the DMA runs in Register mode, the DMA
controller simply uses the values contained in the DMA channel’s registers. In the case of
Descriptor mode, the DMA controller looks in memory for its configuration values.

Table 5.8: DMA registers.

Next descriptor pointer (lower 16 bits) Address of next descriptor

Next descriptor pointer (upper 16 bits) Address of next descriptor

Start address (lower 16 bits) Start address (source or destination)

Start address (upper 16 bits) Start address (source or destination)

DMA configuration Control information (enable, interrupt selection, 1D vs. 2D)
X_Count Number of transfers in inner loop

X_Modify Number of bytes between each transfer in inner loop

Y_Count Number of transfers in outer loop

Y_Modify Number of bytes between end of inner loop and start of outer loop

5.5.5 Register-Based DMA

In a register-based DMA, the processor directly programs DMA control registers to initiate a
transfer. Register-based DMA provides the best DMA controller performance because regis-
ters don’t need to keep reloading from descriptors in memory, and the core does not have to
maintain descriptors.

Memory Systems 229

Register-based DMA consists of two submodes: Autobuffer mode and Stop mode. In
Autobuffer DMA, when one transfer block completes, the control registers automatically
reload to their original setup values and the same DMA process restarts, with zero overhead.

As we see in Figure 5.25, if we set up an Autobuffer DMA to transfer some number of words

from a peripheral to a buffer in L1 data memory, the DMA controller would reload the initial

parameters immediately upon completion of the 1024th word transfer. This creates a “circular
buffer” because after a value is written to the last location in the buffer, the next value will be

written to the first location in the buffer.

Circular Buffer

Start <
Address
Increments
Reset
v Address
End

Figure 5.25: Implementing a circular buffer.

Autobuffer DMA especially suits performance-sensitive applications with continuous data
streams. The DMA controller can read in the stream independent of other processor activi-
ties and then interrupt the core when each transfer completes. While it’s possible to stop
Autobuffer mode gracefully, if a DMA process needs to be started and stopped regularly, it
doesn’t make sense to use this mode.

Let’s take a look at an Autobuffer example in Example 5.6.

Example 5.6

Consider an application where the processor operates on 512 audio samples at a time,
and the codec sends new data at the audio clock rate. Autobuffer DMA is the perfect
choice in this scenario, because the data transfer occurs at such periodic intervals.

Drawing on this same model, let’s assume we want to “double-buffer” the incoming
audio data. That is, we want the DMA controller to fill one buffer while we operate
on the other. The processor must finish working on a particular data buffer before the
DMA controller wraps around to the beginning of it, as shown in Figure 5.26. Using
Autobuffer mode, configuration is simple.

230 Chapter 5

Memory
Buffers

X Count = 512 [<— Peripheral fills one buffer

Y Count = 27 — Interrupt » Process first 512 bytes of buffer

[¢— Processor works on other buffer

— Interrupt » Process second 512 bytes of buffer
— Registers reload, and DMA starts over again

Figure 5.26: Double buffering.

The total count of the Autobuffer DMA must comprise the size of two data buffers via a
2D DMA. In this example, each data buffer size corresponds to the size of the inner loop
on a 2D DMA. The number of buffers corresponds to the outer loop. Therefore, we keep
XCOUNT = 512. Assuming the audio data element size is 4 bytes, we program the

word transfer size to 32 bits and set XMODIFY = 4. Since we want two buffers, we set
YCOUNT = 2. If we want the two buffers to be back-to-back in memory, we must set
YMODIFY = 1. However, for the reasons we’ve discussed, in many cases it’s smarter to
separate the buffers. This way, we avoid conflicts between the processor and the DMA
controller in accessing the same sub-banks of memory. To separate the buffers, YMODIFY
can be increased to provide the proper separation.

In a 2D DMA transfer, we have the option of generating an interrupt when XCOUNT
expires and/or when YCOUNT expires. Translated to this example, we can set the DMA
interrupt to trigger every time XCOUNT decrements to O (i.e., at the end of each set of
512 transfers). Again, it is easy to think of this in terms of receiving an interrupt at the
end of each inner loop.

Stop mode works identically to Autobuffer DMA, except registers don’t reload after DMA
completes, so the entire DMA transfer takes place only once. Stop mode is most useful for
one-time transfers that happen based on some event—for example, moving data blocks
from one location to another in a nonperiodic fashion, as is the case for buffer initialization.
This mode is also useful when you need to synchronize events. For example, if one task

Memory Systems 231

has to complete before the next transfer is initiated, Stop mode can guarantee this
sequencing.

5.5.6 Descriptor-Based DMA

DMA transfers that are descriptor-based require a set of parameters stored within memory

to initiate a DMA sequence. The descriptor contains all of the same parameters normally
programmed into the DMA control register set. However, descriptors also allow the chaining
together of multiple DMA sequences. In descriptor-based DMA operations, we can program
a DMA channel to automatically set up and start another DMA transfer after the current
sequence completes. The descriptor-based model provides the most flexibility in managing a
system’s DMA transfers.

Blackfin processors offer two main descriptor models—a Descriptor Array scheme and a
Descriptor List method. The goal of these two models is to allow a tradeoff between flexibility
and performance. Let’s take a look at how this is done.

In the Descriptor Array mode, descriptors reside in consecutive memory locations. The DMA
controller still fetches descriptors from memory, but because the next descriptor immediately
follows the current descriptor, the two words that describe where to look for the next descrip-
tor (and their corresponding descriptor fetches) aren’t necessary. Because the descriptor does
not contain this Next Descriptor Pointer entry, the DMA controller expects a group of descrip-
tors to follow one another in memory like an array.

A Descriptor List is used when the individual descriptors are not located “back-to-back™ in
memory. There are actually multiple sub-modes here, again to allow a tradeoff between per-
formance and flexibility. In a “small descriptor” model, descriptors include a single 16-bit
field that specifies the lower portion of the Next Descriptor Pointer field; the upper portion is
programmed separately via a register and doesn’t change. This, of course, confines descriptors
to a specific 64 K (=2'%) page in memory. When the descriptors need to be located across

this boundary, a “large” model is available that provides 32 bits for the Next Descriptor
Pointer entry.

Regardless of the descriptor mode, using more descriptor values requires more descriptor
fetches. This is why Blackfin processors specify a “flex descriptor model” that tailors the
descriptor length to include only what’s needed for a particular transfer, as shown in Figure 5.27.
For example, if 2D DMA is not needed, the YMODIFY and YCOUNT registers do no need to be
part of the descriptor block.

5.5.6.1 Descriptor Management

So what’s the best way to manage a descriptor list? Well, the answer is application-dependent,
but it is important to understand what alternatives exist.

232 Chapter 5
Descriptor Array Mode Descriptor List (Small Model) Mode
0x0 Start_Addr[15:0] Next_Desc_Ptr{15:0] »| Next_Desc_Ptr{15:0] »| Next_Desc_Ptr[15:0]
0x2 | Start_Addr[31:16] Start_Addr[15:0] Start_Addr[15:0] Start_Addr[15:0]
Ox4 DMA_Config Start_Addr{31:16] Start_Addr[31:16] Start_Addr{31:16]
| Descriptor
0x6 X_Count Block 1 DMA_Config DMA_Config DMA_Config
0x8 X_Modify X_Count X_Count X_Count
OxA Y_Count X_Modify X_Modify X_Modify
0xC Y_Modify Y_Count Y_Count Y_Count
OxE | Start_Addr{15:0] Y_Modify Y_Modify Y_Modify
0x10 | Start_Addr[31:16]
0x12 DMA_Config Descriptor List (Large Model) Mode
Ox14 X_Count g Descriptor
Block 2 Next_Desc_Ptr{31:16] Next_Desc_Ptr{31:16] Next_Desc_Ptr{31:16]
0x16 X_Modify > >
Next_Desc_Ptr[15:0] Next_Desc_Ptr[15:0] Next_Desc_Ptr[15:0]
0x18 Y_Count
Start_Addr[15:0] Start_Addr[15:0] Start_Addr[15:0]
0x1A Y_Modify
Start_Addr[31:16] Start_Addr[31:16] Start_Addr[31:16]
0ox1C Start_Addr[15:0]
DMA_Config DMA_Config DMA_Config
Ox1E | Start_Addr[31:16]
) X_Count X_Count X_Count
i \ Descriptor
0x20 DMA_Config
Block 3 X_Modify X_Modify X_Modify
"""""" Y_Count Y_Count Y_Count
"""""" Y_Modify Y_Modify Y_Modify
Descriptor Block 1 Descriptor Block 2 Descriptor Block 3

Figure 5.27: DMA descriptor models.

The first option we will describe behaves very much like an Autobuffer DMA. It involves setting
up multiple descriptors that are chained together as shown in Figure 5.28a. The term “chained”
implies that one descriptor points to the next descriptor, which is loaded automatically once the
data transfer specified by the first descriptor block completes. To complete the chain, the last
descriptor points back to the first descriptor, and the process repeats. One reason to use this tech-
nique rather than the Autobuffer mode is that descriptors allow more flexibility in the size and
direction of the transfers. In our YCbCr example (Example 5.5), the Y buffer is twice as large

as the other buffers. This can be easily described via descriptors and would be much harder to
implement with an Autobuffer scheme.

The second option involves the processor manually managing the descriptor list. Recall that a
descriptor is really a structure in memory. Each descriptor contains a configuration word, and
each configuration word contains an “Enable” bit which can regulate when a transfer starts. Let’s

Memory Systems 233

(a) Linked List of Descriptors

Descriptor
Data
Descriptor
Data
Descriptor —
Data
(b) “Throttled” Descriptor Management
Descriptor
Data Stop
Start
. Packet Info .
____________ Descriptor [
Data — Stop
1 Packet Info .

Figure 5.28: DMA descriptor throttled by the processor.

assume we have four buffers that have to move data over some given task interval. If we need to
have the processor start each transfer specifically when the processor is ready, we can set up all
of the descriptors in advance, but with the “Enable” bits cleared. When the processor determines
the time is right to start a descriptor, it simply updates the descriptor in memory and then writes
to a DMA register to start the stalled DMA channel. Figure 5.28b shows an example of this flow.

When is this type of transfer useful? EMP applications often require us to synchronize an

input stream to an output stream. For example, we may receive video samples into memory
at a rate that is different from the rate at which we display output video. This will happen in
real systems even when you attempt to make the streams run at exactly the same clock rate.

234 Chapter 5

In cases where synchronization is an issue, the processor can manually regulate the DMA
descriptors corresponding to the output buffer. Before the next descriptor is enabled, the proc-
essor can synchronize the stream by adjusting the current output descriptor via a semaphore
mechanism. For now, you can simply consider semaphores tools that guarantee only one entity
at a time accesses a shared resource.

When using internal DMA descriptor chains or DMA-based streams between processors, it
can also be useful to add an extra word at the end of the transferred data block that helps iden-
tify the packet being sent, including information on how to handle the data and, possibly, a
time stamp. The dashed area of Figure 5.28b shows an example of this scheme.

Most sophisticated applications have a “DMA Manager” function implemented in software.
This may be provided as part of an operating system or real-time kernel, but it can also run
without either of these. In both cases, an application submits DMA descriptor requests to the
DMA Queue Manager, whose responsibility it is to handle each request. Usually, an address
pointer to a “callback” function is part of the system as well. This function carries out the
work you want the processor to perform when a data buffer is ready, without needlessly mak-
ing the core linger in a high-priority interrupt service routine.

There are two general methods for managing a descriptor queue using interrupts. The first is
based on interrupting upon the completion of every descriptor. Use this method only if you
can guarantee that each interrupt event will be serviced separately, with no interrupt overrun.
The second involves interrupting only on completion of the work transfer specified by the last
descriptor of a work block. A work block is a collection of one or more descriptors.

To maintain synchronization of the descriptor queue, you need to maintain in software a count
of descriptors added to the queue, while the interrupt handler maintains a count of completed
descriptors removed from the queue. The counts are then equal only when the DMA channel
pauses after having processed all the descriptors.

5.5.7 Advanced DMA Features

5.5.7.1 System Performance Tuning

To effectively use DMA in a multimedia system, there must be enough DMA channels to sup-
port the processor’s peripheral set fully, with more than one pair of Memory DMA streams.
This is an important point, because there are bound to be raw media streams incoming to
external memory (via high-speed peripherals), while at the same time data blocks will be
moving back and forth between external memory and L.1 memory for core processing. What’s
more, DMA engines that allow direct data transfer between peripherals and external memory,
rather than requiring a stopover in L.1 memory, can save extra data passes in numerically
intensive algorithms.

As data rates and performance demands increase, it becomes critical to have “system perform-
ance tuning” controls at your disposal. For example, the DMA controller might be optimized

Memory Systems 235

to transfer a data word on every clock cycle. When there are multiple transfers ongoing in the
same direction (e.g., all from internal memory to external memory), this is usually the most
efficient way to operate the controller because it prevents idle time on the DMA bus.

But in cases involving multiple bidirectional video and audio streams, “direction control”
becomes obligatory in order to prevent one stream from usurping the bus entirely. For
instance, if the DMA controller always granted the DMA bus to any peripheral that was ready
to transfer a data word, overall throughput would degrade when using SDRAM. In situations
where data transfers switch direction on nearly every cycle, the latency associated with turn-
around time on the SDRAM bus will lower throughput significantly. As a result, DMA con-
trollers that have a channel-programmable burst size hold a clear advantage over those with a
fixed transfer size. Because each DMA channel can connect a peripheral to either internal or
external memory, it is also important to be able to automatically service a peripheral that may
issue an urgent request for the bus.

Other important DMA features include the ability to prioritize DMA channels to meet cur-
rent peripheral task requirements, as well as the capacity to configure the corresponding DMA
interrupts to match these priority levels. These functions help insure that data buffers do not
overflow due to DMA activity on other peripherals, and they provide the programmer with
extra degrees of freedom in optimizing the entire system based on the data traffic on each
DMA channel.

5.5.7.2 External DMA

Let’s close out this chapter by spending a few minutes discussing how to DMA data between
the processor and a memory-mapped external device. When a device is memory-mapped

to an asynchronous memory bank, a MemDMA channel can move data into and out of the
external chip via the DMA FIFOs we described earlier. If the destination for this data is another
external memory bank in SDRAM, for example, the bus turns around when a few samples
have entered the DMA FIFO, and these samples are then written back out over the same exter-
nal bus, to another memory bank. This process repeats for the duration of the transfer period.

Normally, these Memory DMA transfers are performed at maximum speed. Once a
MemDMA starts, data transfers continuously until the data count expires or the DMA channel
is halted. This works well when the transfer is being made as a memory-to-memory transfer,
but if one of the ends of the transfer is a memory-mapped device, this can cause the proces-
sor to service the transactions constantly, or impede the memory-mapped device from making
transfers effectively.

When the data source and/or destination is external to the processor, a separate “Handshake
DMA” mode can help throttle the MemDMA transfer, as well as improve performance
by removing the processor from having to be involved in every transfer. In this mode, the

236 Chapter 5

Memory DMA does not transfer data automatically when it is enabled. Rather, it waits for an
external trigger from another device. Once a trigger event is detected, a user-specified portion
of data is transferred, and then the Mem-DMA channel halts and waits for the next trigger.

The handshake mode can be used to control the timing of memory-to-memory transfers. In
addition, it enables the Memory DMA to operate efficiently with asynchronous FIFO-style
devices connected to the external memory bus. In the Blackfin processor, the external interface
acknowledges a Handshake DMA request by performing a programmable number of read or
write operations. It is up to the device connected to the designated external pins to de-assert or
assert the “DMA request” signal.

The Handshake DMA configuration registers control how many data transfers are performed
upon every DMA request. When set to 1, the peripheral times every individual data transfer.
If greater than 1, the external peripheral must possess sufficient buffer size to provide or con-
sume the number of words programmed. Once the handshake transfer commences, no flow
control can hold off the DMA from transferring the entire data block.

In the next chapter, we will discuss “speculative fetches.” These are fetches that are started but
not finished. Normally, speculative fetches can cause problems for external FIFOs, because the
FIFO can’t tell the difference between an aborted access and a real access, and it increments
its read/write pointers in either case. Handshake DMA, however, eliminates this issue, because
all DMA accesses that start always finish.

Endnotes

Application Note 23710, Rev A: “Understanding Burst Mode Flash Memory Devices,”
Spansion, March 23, 2000.

“DDR2 SDRAM,” www.elpida.com/en/ddr2/advantage.html.

“DDR2—Why Consider It?” Micron Corporation, 2005, http://download.micron.com/pdf/
flyers/ddr_to_ddr2.pdf.

Dipert, Brian, “Pick a Card: Card Formats,” EDN, July 8, 2004.
Heath, Steve, Embedded Systems Design, Elsevier (Newnes), second edition, 2003.

Hennessy, J., and Patterson, D., Computer Architecture: A Quantitative Approach, Morgan
Kaufmann, third edition, 2002.

“Innovative Mobile Products Require Early Access to Optimized Solutions,” Position Paper by
Samsung Semiconductor, Inc.

Inoue, Atsushi, and Wong, Doug, “NAND Flash Applications Design Guide,” Toshiba America
Electronic Components, Inc., Revision 1.0, April 2003.

Memory Systems 237

MacNamee, C., and Rinne, K., “Semiconductor Memories,” www.ul.ie/~rinne/et4508/
ET4508_L9.pdf.

“Mobile-RAM” Application Note, V1.1, Feb. 2002, Infineon Technologies.

Pietikainen, V., and Vuori, J., Memories ITKC11 “Mobiilit sovellusalustat (Mobile
Application Platforms),” http://tisu.mit.jyu.fi/embedded/itkc11/itkc11.htm.

Tal, Arie, “Two Technologies Compared: NOR vs. NAND White Paper,” M-Systems,
Revision 1.1, July 2003.

Technical Note: TN-46-05. “General DDR SDRAM Functionality,” Micron Corporation.

Wong, Doug, “NAND Flash Performance White Paper,” Toshiba America Electronic
Components, Inc., Revision 1.0, March 2004.

This page intentionally left blank

Timing Analysis in
Embedded Systems

Ken Arnold

6.1 Introduction

Just as in comedy, timing is essential to the success of a microcomputer design. Often it is
quite possible to get one system functioning by simply interconnecting the various compo-
nents. But it is significantly more difficult to be able to guarantee that many systems will work
under the entire range of possible conditions that they may be exposed to. There are many
designs in production right now that have a number of unidentified failures due to the lack of a
worst-case analysis of the design. When timing or loading problems show up in a design, they
usually appear as intermittent failures or as sensitivity to power supply fluctuations, tempera-
ture changes, and so on.

A worst-case design takes into account all available information regarding the components
to be used with respect to variations in performance. Even when all parameters are at their
most adverse values, the worst-case design can still be proved to meet the specifications.
These variants may be due to changing manufacturing conditions, temperature, voltage,

and other variables. Without performing a detailed analysis, there is no way of knowing

if the design will work reliably under all operating conditions. It is much better to design
reliability and simplicity of manufacturing into a product using worst-case design rules than
to attempt to correct a problem after the design has been implemented. With the emphasis
that must be given to the quality of the final product, a designer is obligated to perform a
detailed examination of the timing in a system. As is the case in most quality improvements,
these efforts result in direct cost and saving time. This is clearly one of the places where the
designer can have the greatest impact on overall product quality.

6.2 Timing Diagram Notation Conventions

Timing notation is illustrated in Figure 6.1. The timing notation used in manufacturers’ data
sheets may vary from this notation but is usually very similar. It is also important to notice
that although the diagrams are reasonably standard, there is a wide variation in the selection of
symbols for each timing parameter.

240 Chapter 6

AN\

Valid High Transition Low Valid Transition High Valid High
Low
Floating Active Active Active Active
(Not Driven) Valid (Driven) Valid (Driven)
(Tri-state) Stable Undefined Stable Changing
(High-Z) Data or Data Data
Changing
Data

Figure 6.1: Timing diagram notation as used in this book.

The purpose of timing analysis is to determine the sequence of events in each of the bus cycles
so that we can delimit, among other things, the time available for each of the components

to respond to changes. This time is compared to the requirements as specified in the
manufacturers’ data sheets to determine whether they are compatible and by what margin.

The most important timing specifications for interfacing components to a bus-oriented
design are:

e Rise/fall time

e Propagation delay time

e Setup time

e Hold time

e Tri-state enable and disable delays
e Pulse width

e Clock frequency

There are two general classes of logic: combinatorial and sequential. Combinatorial logic
has no memory and its output is some logical function of its current inputs, after some delay.
Examples of combinatorial logic include gates, buffers, inverters, multiplexers, and decoders.
Sequential logic has memory, which means that its outputs are a function of both current

and past inputs. Examples of sequential logic are flip-flops, registers, microprocessors, and
counters. There are two types of sequential logic. Synchronous logic is synchronized to
change only when there is a clock transition. In contrast, asynchronous logic does not use a
clock signal. Almost all the logic used in a microcomputer design will either be unclocked
asynchronous logic (gates, decoders) or clocked synchronous logic (counter, latch or
microprocessor). Some types of devices are available in either form. Each of the timing

Timing Analysis in Embedded Systems 241

specifications in the following discussion is described using simple logic devices as they are
typically used in embedded computer designs.

6.2.1 Rise and Fall Times

The rise time of a signal is usually defined as the time required for a logic signal voltage to
change from 20% to 80% of its final value. The fall time is from 80% to 20%, as shown in
Figure 6.2. These times are also commonly defined by some manufacturers as the transitions
between the 10% and 90% levels.

Logic One—
80% of LogicOne ——t+—-A—-——————-——-—-—-X—"4j—-——7"—"—"————

20% of LogicOne _ _ ¥ _ | _)l N

Rise Time Fall Time

Figure 6.2: Rise and fall times of a signal.

6.2.2 Propagation Delays

The propagation delay is the time it takes for a change at the input of a device to cause a
change at the output. All devices—even wires—exhibit some propagation delay. Some devices
do not have symmetrical delays for positive and negative transitions. In Figure 6.3, the propa-
gation times for a high to low transition are shorter than for a low to high transition. This
asymmetrical delay is common for TTL and open collector and open drain outputs because
they are better at sinking current than sourcing it. Thus, the load capacitance is charged more
slowly when the current is being supplied from the weaker “high side” or pull-up device.
Propagation delays are usually measured from the 50% amplitude points, as shown in Figure 6.3.

Input A \ / \ H \
Input B \ /
:))—A NAND B) 4 /S
—» je=Tpy > je=Tpy

Figure 6.3: Propagation delay.

6.2.3 Setup and Hold Time

In Figure 6.4, a standard D type flip-flop (e.g., a 74xx74 device) is shown along with a sample
timing diagram that illustrates the operation and key timing parameters of a flip-flop. This type
of flip-flop samples the D input whenever the clock (CK) line goes high, and after a delay, the

242 Chapter 6

Clock _A \ ' _/
Data 1\ /
~— D Qp— QOutput 4 \ /
¥» CK Teckq=> ¢~ —> |&=Tgy, —» [Ty,

Figure 6.4: Setup and hold time.

output remains in the same state until the next rising edge on the clock line. The triangle on
the clock input indicates that it is a rising edge sensitive input, meaning that it will only have
an effect when there is a rising edge on the clock pin. A falling edge sensitive input would
have a bubble outside the block where the clock enters the flip-flop. In order to be able to
guarantee that the flip-flop will operate correctly, the D input must be stable during the setup
and hold time.

Figure 6.4 also shows the propagation delay from clock to Q out (Tpckg), the setup time (Tgy),
and the hold time (Ty). Setup time is the amount of time a sampled input signal must be valid
and stable prior to a clock signal transition. Hold time is the amount of time that a sampled
signal must be held valid and stable after a clock signal transition occurs. If these conditions
are not met, the Q output may become invalid or even oscillate. This condition is referred to as
metastability. The times of these and most other signals are frequently measured with respect
to the 50% amplitude points of the clock signal rather than the valid logic one and zero levels.
An analogy for the flip-flop as a sampling device is that of an instant camera: The clock is the
shutter, the D input is the lens, and the output is the film image. The input is sampled when
the shutter is open, and if the subject moves with the shutter open, the picture will be blurred.
For the flip-flop, the “shutter open” time, referred to as the window of uncertainty, is shown in
Figure 6.5, along with some possible results.

Window of Setup Time _ Hold Time
Uncertainty 1_ Violation Violation
—p <G
Clock —\ ™\
oc __/ \ /]
Data —/ \
Q Output / had

TsulTal ™ [*Tsy —™ [+ Ty

Figure 6.5: Metastability of a flip-flop.

Timing Analysis in Embedded Systems 243

Metastability of a storage device such as a flip-flop or register is caused by the change of an
input signal too close to the edge of the clock signal. In other words, if the setup or hold time
requirements are not met, the output of the device is unpredictable and may even be unstable.
The output may operate normally, take an invalid level, or oscillate (which could also explain
why indecisive people take bad photos!).

6.2.4 Tri-State Bus Interfacing

When multiple devices are capable of driving the same line, the possibility exists that two or
more of them will try to drive it in opposite directions at the same time. When tri-state devices
fight like this it is called bus contention. Figure 6.6 illustrates this condition. Although the data
is unpredictable during this period, there are far worse things that can happen as a result of
this condition. Since most tri-state devices have the ability to drive many loads, they are also
capable of sourcing and sinking large currents. When two of these devices are in contention,
very large currents with peaks in the tens or hundreds of amperes can flow for time periods on
the order of nanoseconds.

Toe Top
Output Output
Enable [[¢—Disable
Display Display
Output A Output A
Output Enable A Enabled Enabled

Output B Output B
Output Enable B Enabled Enabled /

Data Bus Drive A Data Drive B Date)—(A Data B Data)—

Design Bus Overlap =
= Margin |“ Contention ~™} l“r

opA~ ToEB

Figure 6.6: Tri-state bus timing and contention.

The large current spikes that occur during contention may stress the devices and significantly
reduce their reliability. A far more frequent problem, however, is the temporary drop or glitch
in the local power supply wires that can cause any other nearby devices to change state. As
you can imagine, this can create havoc in sequential logic, particularly for micros. Based

on past experience with Murphy’s Law, these glitches generally seem to change the current
instruction to “‘jump immediate to format hard disk routine,” thereby erasing all your data. In

a properly designed system, there is a “dead time” when no device is driving the bus to act

as a safety margin between the times that two devices are enabled to drive their outputs. The
problems arise when the output enable time of a device which is just turning on is less than the
output disable time of a device which is turning off.

244 Chapter 6

6.2.5 Pulse Width and Clock Frequency

The width of a positive going pulse is the period beginning from its positive transition (rising
edge or leading edge) to its negative transition (falling or trailing edge). Figure 6.7 illustrates
these concepts. Pulse widths are important in defining the operation of control signals such
as the memory read or write signals and clocks. Clock signals used for modern microproces-
sors usually, but do not always, have equal high and low pulse width requirements. The period
(T) of a signal is the sum of the rise time, high time, fall time, and low time. The frequency
of a processor clock (f = 1/T) may have a lower limit as well as an upper limit. The stand-
ard NMOS 8051 family of parts has a lower frequency limit of 1.2 MHz. That means that the
processor cannot be operated at a lower frequency. The reason is that the processor’s internal
design requires a constant clock to correctly maintain its state. Other processors (such as

the 80C51 series CMOS devices) can tolerate having their clock stopped completely, since
they have been designed to maintain their internal states indefinitely, as long as power is
applied.

Pulse
—p
Width

S \e—

L

Teik
[4—Period = 1/Frequency—

Figure 6.7: Pulse width, period, and clock frequency.

6.3 Fan-Out and Loading Analysis: DC and AC

Another important part of worst-case design is a realistic model of the signal loading for each
of the circuit’s outputs. If insufficient drive is available, buffer circuits must be added or the
number of loads must be reduced to guarantee correct operation. Fan-out is the number of
equivalent inputs that can be safely driven by one output. A fan-out of 10 indicates that one
device output can drive 10 inputs. The fan-out is determined from:

e The source, type, and number of loads
e DC characteristics sources and load

e AC characteristics of the loads vs. the source test conditions

Timing Analysis in Embedded Systems 245

DC characteristics of the output and inputs consist of:
e The maximum current that can be produced by an output

e Maximum currents required to drive an input

The maximum output currents are specified as:
® Jopmin- Minimum output low (sink) current for a valid zero output voltage.
® oHmin- Minimum output high (source) current for a valid one output voltage.

Note that a low output is sinking currents that are coming out of the inputs that are being driven.
Likewise, a high output is sourcing current that goes into the inputs that are being driven.

Maximum currents required to drive an input are specified as:
® i1 ma Maximum input low current for a valid zero input voltage.
® imae Maximum input high current for a valid one input voltage.

Another important convention has to do with the sign of the current flowing in or out of a
device pin. In most cases, current flowing into a device pin is given a positive sign (as shown
in Figure 6.8), whereas current flowing out of a pin is given a negative sign (as shown in
Figure 6.9). In both Figures 6.8 and 6.9, the device on the left is the driving device, which tries
to force its output to the desired logic state. In the logic one state, the output sources current
(—50 microampere), and the receiving device absorbs that current (+50 microampere). In our
example, the available output current is exactly equal to the input current used by the load,
resulting in a DC fan-out of 1.

Logic “1”
V+ V+
Current Current

Output High Input High
L N I |
OH IH

—
—{ >t E}-D>O—
—50 pA +50 pA

Current Out Current)
of Pin is Into Pin is
L Negative Positive —

Figure 6.8: Current sign for logic high.

Unfortunately, this convention is not always followed consistently, so it is up to you to recog-
nize the current direction from the context of the situation in which it appears. Generally, the
current direction can be determined by keeping these images in mind, especially since many

data sheets do not specify the sign for the input and output currents.

246 Chapter 6

Logic “0”
V+ V+

Current Current

Output Low Input Low
lo he

..__[:>O_Lr}<— - 5]_.[:>o_

+1mA -1 mA
Current Current Out
Into Pin is of Pin is
— Positive Negative e

Figure 6.9: Current sign for logic low.

The other type of fan-out limitation is the ability of an output to drive the capacitance of the
loads and stray wiring capacitance, also known as AC fan-out. The AC fan-out is determined by
the specified test load for the driving chip and the load presented by the actual load capacitance.
The capacitive load is the parallel combination of all the input capacitances of the gate

inputs attached to the signal, plus the wiring capacitance. Since the capacitors in parallel are
equivalent to a single capacitor equal to the sum of the individual capacitances, we simply add
up all the load capacitor values and compare this to the output’s specified test load. The driving
device’s specified load capacitance, Cy, is the test load capacitance used by the manufacturer
for specifying the AC or timing characteristics of the device. Most often, this specification is
listed in the test conditions or notes for the timing specifications of the chip. As long as the

sum of the load capacitances, including the stray wiring capacitance, is less than the specified
test load for the driving device, all the timing specifications will be valid as specified in the
timing section of the data sheet. If the driving device is overloaded (actual C; is greater than
specified C;), then the timing specifications of the device need to be de-rated (slowed down),
since additional capacitance will increase the rise and fall times of the signal line in question.
Methods for estimating the amount that an overloaded output can withstand are described later.

AC characteristics of the outputs and the inputs consist of:

e (.. The load capacitance that an output is specified to drive is listed in the timing
specifications for the driving device under the name “test conditions,” which is usually
in the notes at the bottom of the specification sheet.

e (;,. Maximum input capacitance of a driven input load.

® Cyyay- Wiring and stray capacitance can be approximated to be in the range of 1 to 2
picofarads per inch of wiring on a typical PC board.

As long as the inequality below is satisfied, the signal will meet the timing specifications for
the driving device. If the actual load is greater, it will delay:

Driving device spec Cp, > actual Cload = Cj;; + Cipp + =+ + Cyiring

Timing Analysis in Embedded Systems 247

The AC fan-out is limited by the parallel combination of the logic inputs’ capacitance, C;,,
and the stray or wiring capacitance. Capacitors in parallel are additive, so the load presented to
an output is the sum of the input capacitances of the logic inputs plus the wiring capacitance.
Logic input capacitance is often difficult to find, since it might not be listed in the component
data sheet but rather in another section of the data book describing the characteristics common
to all members of a given logic family. Typical logic input capacitance ranges from 1 to 5

pF (picofarads or 10~ ?F) but may be outside this range. The maximum load capacitance

that a device is specified to drive (C;) is usually defined in the test conditions for the timing
specifications of an integrated circuit, because it is the timing which is most affected by
capacitance. Load capacitance is usually specified in the range of 50 to 150 pF. Wiring
capacitance is often in the range of 1 to 2 pF per inch of wire for a nominal printed circuit
trace. Actual values can vary quite a bit, depending on the physical dimensions of the trace,
proximity to surrounding signals, and distance from a ground plane, as well as the dielectric
constant of the circuit board material.

6.3.1 Calculating Wiring Capacitance
The standard formula for determining capacitance is:
C=(*A)d

where A is the area of two closely spaced parallel plates, d is the distance between the plates,
and e represents the permittivity of the material. (Permittivity is the measure of how easily a
material can carry electric lines of force.)

For the purposes of this section, we can define the area, A, as the trace length multiplied by the
trace width. Wiring capacitance is determined as a capacitance per unit length for a given trace
width and distance from the ground or power plane.

Let’s examine a typical situation. For an eight-layer PC board with 8 mil traces and innermost
layer ground/power planes, what is the capacitance per inch of trace on each of the signal
layers?

Here are the terms we’ll use in the equations to solve this problem and their values:
e Trace width (w) = 8 mils (one mil equals 103 inch)
e Trace length (/) = 1000 mils
e Area(A) = w times 1
e Total board thickness (T) = 0.062 inch
e Number of layers (N) = 8

248 Chapter 6

e Number of layers separating power and ground plane (n) = 1
e Fringe effect and inter-trace stray capacitance adjustment factor (f) = 1.7
e Permittivity of air (¢) = 8.859 * 107! * (coul?’/(newton*m?))

e Relative permittivity of glass-epoxy dielectric (er) used in this example = 6
We start by determining the thickness of each dielectric layer, represented by
t=T/N-1) = 8.857 mils

Next we need to determine the distance between the trace and ground/power plane,
represented by d. This is found by the formula d = nt, which in this case makes for a simple
calculation!

The capacitance as a function of the number of layers distance (Cd) is found by the formula:
Cd=(e*er*A*f)ld
Using this formula,

C(* d) = 2.073 pF (layer closest to ground/power plane)
C(2 * d) = 1.037 pF (layer next closest to ground/power plane)

C@3 *d) = 0.691 pF (layer farthest from ground/power plane)
To find the average capacitance per inch (Cavg), then:
Cavg = (C(1 *d) + C(2 *d) + C(3 *d))/3 = 1.267 pF

From this example, it is apparent that the stray wiring capacitance can vary significantly
depending on which layer of a multilayer PC board a particular trace is located. Since a signal
may travel on different layers between source and destination, exact values might be difficult
to determine.

When performing a worst-case analysis of a given design, it is most effective to calculate the
total load capacitance based on the sum of the loads’ input capacitances, plus an estimate of
the nominal wiring capacitance using 1 or 2 picofarads per inch of wiring using a rough guess
for the length of the trace.

In a typical design, we might pick the diagonal distance from one corner of the board to the
other and multiply by 1 or 2 picofarads. If the total load capacitance is less than the driving

Timing Analysis in Embedded Systems 249

device’s specified test load capacitance, the device will perform as specified. If not or if it’s
very close, we might want to make a more accurate estimate or avoid the problem by using a
driving device that has a larger specified test load capacitance. Other alternatives include using
two outputs from the same chip in parallel to double the drive capacity or splitting the loads
into two separate groups and driving them independently from two different sources.

As digital IC technology has improved, allowing signals to be processed at ever-increasing
rates, the other non-ideal effects of the devices that could be ignored at lower speeds become
more important. At very high speeds, these secondary effects become much more important. A
wire ceases to be equivalent to a 0 ohm connection with zero time delay. For the newer high-
speed logic devices, the speed of the signal traveling down the wire, distributed resistance,

and inductance, as well as capacitance, may become very important. When the time it takes a
signal to propagate down a wire is of the same order as the rise and fall time of the signal, it
behaves as a transmission line rather than an ideal wire. Transmission-line effects are briefly
described later in this chapter.

6.3.2 Fan-Out When CMOS Drives LSTTL

A common design problem involves the determination of the number of LSTTL loads a
CMOS output can drive. In this section, we will use the parameters shown in Tables 6.1-6.4 to
create an example to determine the number of LSTTL loads a CMOS gate can drive.

Table 6.1: LSTTL gate DC parameters.

Symbol Parameter Min Typ Max Units Conditions
Vi Input low voltage —0.3 0.8 v
Viu Input high voltage 2.4 Vec+0.3 \
I Input low current —120 —360 HA
[Input high current 30 50 LA
Cin Input capacitance 10 pF

Table 6.2: Absolute maximum operating conditions.

Symbol Parameter Min Typ Max Units Conditions
VoL Output low voltage 0.2 0.4 \% @ lo. max
Vo Output high voltage 2.8 3.5 \% @ oy max
loL Output low current 3.2 8 mA @ Vo, max
lon Output high current —600 —1000 LA @ Vo min
Note: Test conditions R, = 1K, C, = 100 pF.

250 Chapter 6

Table 6.3: CMOS gate DC parameters.

Symbol Parameter Min Typ Max Units Conditions

Vi Input low voltage 2.0 \
Vil Input high voltage 3.0 \%
I Input leakage current ~0 HA
Cin Input capacitance 25 pF

Table 6.4: Absolute maximum operating conditions.

Symbol Parameter Min Typ Max Units Conditions
VoL Output low voltage 0.4 \ @ |o, max
Vou Output high voltage 4.5 \Y @ |y max
loL Output low current 3.6 mA @ Vg max
lon Output high current 600 LA @ Vo min

For Logic one:

Note: Test conditions R, = 5K, C, = 150 pF.

CMOS loy = 600 microamperes (11A)

LSTTL I,y = 50 pA so 6001A/50uA = 12 loads
For Logic zero:

CMOS lg, = 3.6 milliamperes (mA)

LSTTL I, = 360 1A so 3.6 mA/360pA = 10 loads

Thus, considering the DC specifications only, the maximum number of loads driven is 10,
since the zero state is the worst-case condition. The AC parameters would not be the limiting
factor in this case because the CMOS output is specified with a C; of 150 pF, and each LS
input is only 10 pF. Thus, 10 loads would present 100 pF plus stray wiring capacitance of
less than 50 pF would present an AC load less than the 150 pF CMOS output load-handling
capability.

How many additional CMOS loads could be added? There are two levels of answer for this
problem. First, from a DC point of view all the CMOS I; output sink current is used up, so
from this point of view, no loads could be added. However, there is negligible current in a
CMOS input, so it is not the practical limit. In fact, the errors in the DC computations above are
in excess of the amount required to drive a CMOS input, so in reality the DC current is not a
problem. The real limitation is the capacitive loading. Even if you assume that the loading from
the TTL inputs and wiring can be ignored, the CMOS input capacitance will limit the loading.
For the output to conform to the specs, the test load was specified as 150 pF (C;). With 10
LSTTL loads of 10 pF each, the C; on the CMOS gate output would be 10 * 10 = 100 pF.
Since the CMOS gate timing is specified at C; = 150 pF, there is only 150—100 = 50 pF

Timing Analysis in Embedded Systems 251

left over to drive the additional CMOS loads. Since the CMOS C;, is 25 pF, the number of
additional gates that can be driven is:

50 pF/25 pF = (remaining C;)/(C;, of additional CMOS inputs) = 2

Practically speaking, the wiring capacitance on a PC board will generally be in the 2-3 pF
per inch range, so allowing 25 pF for wiring capacitance would permit one CMOS load in
addition to the 10 LSTTL loads from above.

What if the CMOS output were to drive only CMOS loads? The input capacitance of the
CMOS gate is 25 pF, so even if all loads were CMOS, it can only drive C;/C;, = 150 pF/

25 pF = 6 CMOS loads and still meet its test condition limits. Since we must also allow for
the wiring capacitance, we should limit this device to five loads, leaving 25 pF for the wiring
capacitance. The additional load capacitance from more than five devices would likely result
in timing performance that would be poorer than that specified in the data sheet. Excessive
capacitance can also make ground bounce worse, which is the change in on-chip ground
voltage due to rapid current spikes caused by charging load capacitance, developing a voltage
across the lead inductance of the driving IC.

6.3.3 Transmission-Line Effects

When you’re using high-speed logic and the rise and fall times are of the same order as the
propagation of the signal, transmission-line effects become significant. When a signal transi-
tion propagates down a wire, it will be reflected back if the signal is not absorbed at the des-
tination end. At lower speeds the effect can be ignored, but with the fastest processors now in
use, most designers will need to consider whether the effects will have a negative impact on
their designs and take appropriate action if necessary.

Several characteristics of digital transmission lines must be addressed, including the
following:

e Signal transition time vs. clock rate

e Mutual inductance and capacitance (crosstalk)
e Physical layout effects

e Impedance estimates

e Strip line vs. micro strip

e Effects of unmatched impedances

e Termination and other alternatives

e Series termination vs. parallel termination

e DC vs. AC termination techniques

252 Chapter 6

The techniques for high-speed design are beyond the scope of this text but are covered in
detail in an excellent text on the subject, High-Speed Digital Design: A Handbook of Black
Magic, by Howard W. Johnson and Martin Graham. In contrast with the subtitle, this subject is
easily understood by applying some very basic physics.

A transmission line is a conductor long enough that the signal at the far end of the line is
significantly different from the near end, due to the time it takes the signal to propagate from
one end to the other.

In this book, we will assume that the interconnections between the devices are not long
enough to require transmission-line analysis. To verify that this is the case we can use a simple
estimate. The rough estimate we will make is based on the idea that a wire does not have to be
analyzed as a transmission line if the signal takes longer to rise or fall than it takes to get from
one end of the wire to another. In other words, if the signal doesn’t have to travel too far, both
ends of the wire are at approximately the same voltage. To come up with a numerical value

to determine whether a signal must be treated as a transmission line, we can use a simple
calculation:

[=T,/D

where:
I = Length of rising or falling edge in inches (in)
T, = Rise time in picoseconds (pS)
D = Delay in picoseconds per inch (pS/in)

For traces on a standard printed circuit board, the value for D will be in the range of 100 to
200 pS/in. Depending on how much distortion you’re willing to live with, the critical trace
length will be between one-sixth and one-quarter of the length of a trace corresponding to the
signal’s transition. For a trace that is shorter than one-sixth the length of the signal’s rising

or falling edge, the circuit seldom needs to be considered to be a transmission line. Traces

that are much longer than one-quarter the length of the fastest edge will start to behave as
transmission lines, exhibiting reflections of the signal when the transition gets to the far end of
the trace and is reflected back to the near end. Once the trace is about half of the length it takes
for a logic transition to propagate, the problems become quite pronounced.

Let’s look at an example. A logic device on a standard glass-epoxy printed circuit board has a
2 nS rise time. This signal has a rising edge that is:

(2 nS)/(150 pS/in) = ~13 inches long

That means a trace that is one-sixth that length, or about 2 inches or less, does not have to be
considered as a transmission line. If the trace is much longer than two inches, it will begin
to show significant distortions on the rising and falling edges due to the fact that there is a

Timing Analysis in Embedded Systems 253

different signal voltage at each end of the trace at the same instant, resulting in reflections of
the signal from the ends of the trace.

This is one of the most important reasons for using logic that is fast enough and not too much
faster than required to meet the timing requirements. Although it might seem tempting to buy
the fastest device available to reduce the delays in a device which does not meet the timing
requirements, doing so can result in many more difficult problems to solve.

6.3.4 Ground Bounce

Another effect of high-speed signal transitions is called ground bounce. Ground bounce occurs
when a large peak current flows through the ground pin of a chip when one or more logic
outputs change state and discharge their load capacitances through the chip’s ground pin. The
parasitic inductance of the ground pin might not seem very significant, but in the nanohenry
(107° H) range, fast transients can cause large voltages to appear across the ground pin. This
occurs most often when multiple bus signal outputs from one chip change state at the same
time. The rapid, parallel current pulses which result from charging or discharging stray bus
capacitance must be carried through the ground or power pins, which have inductance.

The voltage across an inductor is equal to the inductance times the rate of change of current
through the inductor, or:

V = L * dildt
where:

V = Instantaneous voltage across the inductor (volts)
L = Inductance (henry)
di/dt = Rate of change of current (amperes/sec)

current i = O/t (amperes = coulombs per second)
The charge on a capacitor is Q = CV (coulombs = farads * volts)
V = L* C* (delta V)/(delta 1)
approximately, or:
V=L*C* Vo, = Vo(T,)?
using the output voltage and rise time.

Because of the high-speed (nS) and large (amperes) peak currents, even the small nanohenry
inductance can induce a voltage transient on the order of volts. (The instantaneous voltage

254 Chapter 6

across an inductor is V = L * di/dt.) For typical high-speed signals, nanohenries * amperes/
nanoseconds = volts! This effect is minimized by the use of minimum circuit interconnect
trace lengths, wider ground traces, power and ground planes, and small, surface mounted IC
packages that have very short leads.

For example, a CMOS output driving a 100 pF load with a rise time of 2 nS would induce a
voltage across a typical 1 nH inductance of the chip’s ground lead:

V = 1nH * 100 pF * (4.5-0.5V)/(2nS)> = 0.1V

Although a voltage of 0.1 volt or 100 millivolts may not seem like much, remember that a part
with many outputs, such as a processor, will sometimes switch many outputs at the same time,
and the current that flows through those pins all has to flow through a single ground pin. An
8-bit output will cause 0.8 volt pulse or ground bounce. If the processor drives an 8-bit data
bus and a 16-bit address bus low at the same time, this would result in a 2.4V bounce! The
ground bounce voltage across the ground lead inductance results in a different ground voltage
reference for the chip while the chip’s ground is bouncing. Needless to say, this ground
bounce can cause a logic level to change during the brief pulse, which can cause trouble with
circuits, such as clock signals, which are edge sensitive. This is why high-speed logic devices
may have multiple, short ground pins and may only be available in small, surface-mounted
packages. To make things even worse, if two devices overlap slightly in time driving the bus,
very large current transients may briefly generate even larger currents that in turn generate
larger ground bounce pulses. This can disturb several chips on the board at the same time.

The power supply leads are also subject to bounce for exactly the same reasons, and even
though the power supply is not used as a logic voltage reference, the resulting drop in the local
power supply voltage to the chip can result in errors.

Exact ground lead inductances may prove difficult or impossible to measure, but there is
always some inductance in the ground lead, and the longer the lead, the greater the inductance.
The example above illustrates another reason that it makes sense to avoid logic that is faster
then necessary and to use very short ground and power wires. In fact, high-speed PC boards
should use separate inner layers of a multilayer board to provide large ground and power
planes, allowing the chips’ power and ground leads to be connected using very short wires.

The magnitude of the bounce depends on the number and direction of logic transitions, so
the noise is also data dependent. This is an apparently intermittent hardware design fault
with symptoms that act like a software bug, since it might only happen at certain points in
executing a program, with certain data values.

The example also shows why it is so important to maintain sufficient tolerance to noise in the
logic. This noise tolerance is referred to as noise margin, which is covered in the next section.
Noise margin analysis is especially important in a high-speed logic design, to prevent transient

Timing Analysis in Embedded Systems 255

logic errors, which are extremely difficult to track down. This is another example of how a
proper analysis and worst-case design can save a lot of time and money while delivering much
higher quality and, ultimately, reliability. In the next section, the noise margin analysis process
is described in detail.

6.4 Logic Family IC Characteristics and Interfacing

The three most common logic families are:

e TTL. Transistor-transistor logic (also known as bipolar logic).
e NMOS. n-channel metal oxide semiconductor field effect transistor logic.

e (CMOS. Complementary (n- and p- channel) MOS logic.

All three logic families have versions with TTL compatible inputs, once the most common
type, followed by later NMOS and CMOS. Because of its lower power density and

relatively high circuit density, however, CMOS has become the most common form of logic,
particularly in high-density and low-power battery-operated systems. TTL logic uses bipolar
transistors requiring input drive currents on the order of hundreds of microamperes to a few
milliamperes, depending on the version. Input voltage ranges for TTL-level compatible logic
are generally O to 0.8 V for logic zero and 2.4 to 5V for logic one. Output voltages are from
0to 0.4V for logic zero and 2.8 to 5V for logic one. The 0.4 V difference is called the noise
margin voltage because additive noise at or below this level will not change zeros to ones or
vice versa. The logic threshold voltage (V1) or “0/1 decision point” for TTL logic is typically
around 1.5 V. It may range anywhere between 0.8 and 2.0 V depending on supply voltage and
temperature and varies from one device to another. For TTL circuits, the noise margin is at
least 0.4 V. Figure 6.10 shows the concepts of noise margin and logic threshold voltages.

Vee +5 Volts ——- v Il
Valid One ‘ Valid
VoH min 2.8 Volts Output One
“1” Noise Margin ~ Input v
f Hmin 2.4 Volts
Undefined A 1.5 Volts

¢

‘ “0” Noise Margin y5iq

ViLmax 0-8Volts
VoL max 0-4 Volts

Valid Zero Zero
Input
Gnd 0 Volts O“;p“t ;u

Figure 6.10: Typical TTL logic voltages and noise margin.

256 Chapter 6

Interconnecting different logic families, such as CMOS and TTL, requires the designer to
assure the compatibility of the logic signal voltage levels and adapt the circuit as necessary

to maintain appropriate noise margins. The equivalent resistance or impedance of the signal
network also has an impact on the noise in a specific circuit. High-impedance inputs are more
prone to noise than are low-impedance inputs. The interface design process is illustrated by an
example at the end of this chapter.

TTL logic is capable of sinking high currents and is used for driving very fast, large, heavily
loaded buses. Both active and passive pull-up output devices are used with TTL. The active
pull-up, referred to as a fotem-pole output, uses one transistor to source current and one to
sink it. The passive pull-up uses a transistor to sink current and a resistor connected to V+ as
a current source. If a pull-up resistor is not connected to the gate’s output pin and the collector
is connected only to the output pin, it is referred to as an open collector output. In both cases,
the output current sinking capabilities are greater than current source capacity. Many devices
can sink a few milliamperes but can only source hundreds of picoamperes. Figure 6.11 shows
both totem pole and open collector outputs.

- External
e 1 Resistor
From Output Device Packagej
Internal Pin O_utput
Circuits Pin
Active Pull Up Passive Pull Up
Totem Pole Open Collector

Figure 6.11: TTL outputs: totem pole and open collector.

TTL and CMOS logic are available in several versions, each identified by a distinctive prefix
in the part number. Some of the more common versions and their prefixes are:

e 74xx. Standard TTL.

e 74LSxx. Low-power Schottky clamped TTL.

e 74ALSxx. Advanced LS TTL.

e 74Fxx. (Fast) high-speed TTL.

e 74HCxx. High-speed CMOS with CMOS compatible inputs (Vt = ~Vcc/2).
e 74HCTxx. High-speed CMOS with TTL compatible inputs (Vt = ~1.5V).

Timing Analysis in Embedded Systems 257

e 74FCTxx. High-speed CMOS with TTL compatible inputs (Vt = ~1.5V).
e 74ACTxx. Advanced high-speed CMOS with TTL compatible inputs.

e 74BCTxx. Very high-speed CMOS/Bipolar with TTL compatible inputs.

Schottky logic (TAALSxx 74LSxx and 74Sxx) incorporates a low V; (forward voltage drop)
Schottky diode across the collector-base junction of a transistor to prevent it from saturating.
This increases the speed for turning the transistor off. TTL is generally used where low cost,
output drive, and high speed are important and there is no objection to the relatively high
power consumption and resulting heat.

NMOS logic was used for moderate complexity logic ICs such as more mature microproces-
sors. Most NMOS logic ICs have TTL compatible voltage specs and operate at a lower power
and speed than TTL. The power consumed by NMOS lies between TTL and CMOS, as does
its speed. The input current is nearly zero since the MOSFETSs have extremely high input
resistance. Unfortunately, they do have fairly large input capacitance, limiting the circuit
speed. The output configurations are similar to TTL except the transistors are n-channel field
effect transistors (FETs) rather than bipolar NPN. Both active totem pole and passive (open
drain) outputs are used in microprocessor and microcontrollers. Because of the constant oper-
ating current drain, these devices tend to be limited in size and complexity.

CMOS logic has a significant advantage since it does not use any significant amount of power
when it is static (not changing state). Most of the power used in an operating device is due to
the charge and discharge of internal capacitance and the current transient when both N and P
devices are partially on. As a result, power consumption is a function of clock rate for CMOS
devices. Some processors are even designed to take advantage of this fact by incorporating
“sleep” or low-power modes, stopping some or all of the clock operations when nothing
important is going on. This is frequently required for battery-operated systems to maintain a
reasonable battery life. Another advantage is the standard CMOS logic threshold is one-half
the supply voltage and the output voltages tend to be very close to Vcc and ground voltage,
resulting in higher noise margins than those of TTL devices. This is particularly important for
CMOS devices that operate at reduced power supply voltage. CMOS devices that operate at
3V or less are available.

Because CMOS logic is inherently symmetrical, the rise and fall times tend to be nearly equal.
The symmetry also results in equal source and sink capabilities. The inherent increase in noise
margin makes CMOS less susceptible to noise than TTL and NMOS. Figure 6.12 illustrates this
concept. CMOS devices operating at voltages other than 5V, such as 3.3V, will have a thresh-
old voltage corresponding to Vcc/2. Some versions of CMOS logic operate with a reduced
noise margin to have TTL-compatible input voltages. This is accomplished by artificially low-
ering the input threshold voltage to 1.5V, the same as used for TTL. These TTL input threshold

258 Chapter 6

Vdd +5 Volts ‘ ‘
Valid One Valid
Vormn 4.5 Volts —2utput } One

f “1” Noise Margin Input

f

Undefined — V7 2.5 Volts
2 Volts

ViH min 3 Volts

\
“0” Noise Margin vgid L

Valid Zero f Zero
Output Input

1 t

Figure 6.12: Typical CMOS logic voltages and noise margin.

VoL max 0.4 Volts

Gnd 0 Volts

compatible circuits have a 7 in their number (74HCT, 74BCT, etc.), indicating they have TTL
compatible inputs. A series of high-speed logic compatible with the TTL logic family in func-
tion and input voltage is the 74HCTxx (high-speed CMOS TTL compatible) series. The advan-
tage of the T series CMOS devices is they can be driven directly by devices having TTL output
voltage levels. The T series of CMOS devices has the disadvantage that the noise margin is less
than it is for true CMOS compatible inputs due to the shifted threshold voltage. The 74HCxx
series is pure CMOS with a threshold voltage of one-half the supply voltage (2.5V for a 5 Vcc)
and correspondingly higher noise margins. As a result, a standard TTL output VOHmin of 2.8
volts is not enough to guarantee a logic one value for a 74HCxx gate input.

6.4.1 Interfacing TTL Compatible Signals to 5V CMOS

Interfacing a CMOS output to a TTL input is a direct connection as long as the CMOS output
is capable of sinking the TTL device’s input low current. Interfacing a TTL output to a stand-
ard CMOS input requires the use of at least a pull-up resistor. A resistor on the TTL output to
Vcce will ensure that the output voltage is pulled high enough to guarantee the logic one output
signal is interpreted as a logic one by the CMOS input. Another useful technique when using
5V logic to drive CMOS circuits is to use a higher-voltage open collector or open drain output
with a pull-up resistor connected to the higher supply voltage. This level-shifting technique
can also be used for driving other high-voltage circuits such as high-voltage outputs. In either
case, the objective is to guarantee that there is sufficient noise margin to guarantee a valid
logic one when the TTL compatible output drives a CMOS input.

It is important to note that when a TTL output is pulled above its normal output high voltage,
it will not source any significant current. This is because the TTL output source is equivalent
to a high resistance in series with a voltage source that is effectively limited to around 3'V,

due to internal design constraints. As the output voltage increases until it equals the internal
voltage, the output can no longer source any current. When the voltage is increased beyond the
internal circuitry (up to a limit of Vcc), the internal circuitry is equivalent to a reverse biased

Timing Analysis in Embedded Systems 259

diode, so only leakage currents in the sub-microampere range will flow into the output device.
As a result, the effect of a TTL output on external circuits is negligible when the pin is pulled
high by an external resistor.

Also, a 5V TTL compatible output is often compatible with a 3V CMOS device input, since
the CMOS threshold (Vcc/2 = 1.5 volt) is the same as a 5 volt TTL gate (TTL Vt = 1.5V).
Most of the 3V CMOS devices are designed to withstand a 5V input signal, so it is often
possible to interface 5V TTL outputs directly to 3V CMOS inputs. However, if the 3V
CMOS inputs are not designed to handle 5V inputs, the CMOS device could be destroyed
with an input signal greater than 3V, so it is important to verify this. A 3V CMOS device
output will be close to 3V, so it can drive a 5V TTL compatible input directly.

A 3V CMOS output would probably be marginal driving a 5V CMOS input (Vt = Vcc/2 =
2.5 volt), leaving less than 0.5V CMOS output generally cannot withstand a pull-up resistor to
5V, itis necessary to add a level shifting IC to convert 3V logic levels to 5'V.

Level shifters are available for converting logic levels from one family to another, including
3V toand from 5V, or 5V TTL to +/ -V ECL (emitter-coupled logic), and 5V levels to
+/-12V RS-232 signals. There are also special ICs for driving output loads requiring either

a high voltage or high current output, such as a light, motor or relay. Most microcontrollers
have very weak output drive capability, so external driver ICs may be necessary. These would
typically be needed to drive LEDs, a vacuum fluorescent display, or a motor. Solid-state relays
even allow large AC loads to be controlled by a micro. Likewise, there are other devices

(i.e., optical isolators), allowing high voltages (like 110V AC inputs) to be safely converted
to logic levels for input to a microcontroller. Devices that use potentially hazardous high
voltages should be isolated from the rest of the circuitry for reasons of safety. It might be
possible to connect such devices directly to our circuits, but they would allow us to come into
contact with potentially fatal voltages. The standard 50 or 60 cycle AC power supply used
almost everywhere has the unfortunate characteristic that it is very nearly the optimal voltage
to guarantee that a human heart will stop functioning due to muscle fibrillation. Customer
death by electrocution is sure to result in the next of kin hiring an attorney to relieve you of
all your assets ... unless, of course, they’re your next of kin! There are many isolation devices
available, most of which use the same basic approach.

The isolation can be accomplished using optical or magnetic means, which can provide a
barrier to transient voltages that can be on the order of thousands of volts. The barrier is
transparent and so allows light to pass, but it is made of a good insulator to prevent electrical
current from flowing across the boundary. Figure 6.13 shows a simple optical isolation circuit.

This isolation approach can be used to input high voltages to a microcontroller safely by
connecting the LED to a high-voltage source in series with a resistor and protective diode to
limit the LED’s current and prevent the LED from being exposed to the potentially destructive

260 Chapter 6

High Voltage
Isolation
Boundary

. . Light from LED
Lcégrﬁné;:?;’v LS| IT“ /// Turns on the Switch,
’ ¢ . Allowing Current Flow
Light
Crosses
Boundary

Figure 6.13: Optical isolation allows connection to hazardous voltages.

reverse voltage. The output transistor will then be turned on whenever the LED is turned on by
one half of the AC power cycle. This is useful for time-of-day clock functions, since the AC
power mains frequency is maintained very accurately by the power utilities over a period of
time. The output switch can be connected to the processor counter or interrupt input, allowing
the processor to keep track of time and synchronize its operation with the AC power cycle.

High voltage outputs can also be controlled safely by using the micro’s output to turn

on the LED that turns the output switch on. In this case, another type of switch such as a
silicon-controlled rectifier (SCR) or TRIAC (an AC version of the SCR) is used rather than

a transistor. SCR and TRIAC switches can be obtained to handle relatively large AC loads,
such as lamps and motors. These devices are often referred to as solid-state relays (SSR),
since they are equivalent to an electromechanical relay except that they are implemented
with solid-state semiconductor devices instead of using a coil to move a switch. Both isolated
inputs and outputs are available in complete modules that have all the necessary circuits to
monitor and control high voltage and power devices, using optical isolation for safety. They
have microcontroller-compatible I/O on one side that is optically isolated from the high-power
outputs on the other side.

Very often, even when safety is not an issue, microcontroller chips simply cannot handle the
voltages or currents required to interface with other devices. In some cases it is required when
connecting one logic family to another, incompatible family, such as emitter-coupled logic
(ECL) levels or RS-232 interfaces utilizing negative voltages.

Sometimes a plain, old-fashioned electromechanical relay is a better solution, since relays
usually have contact resistances that are far lower than can be found in a semiconductor
switch. In some cases, a simple transistor or MOSFET switch can be used to control a load
operating at voltages which are greater than the logic supply, such as motors, solenoid
actuators, and relays that might require 12 or more volts to operate.

The circuitry required to interface between logic levels and high-level circuits is described in
detail elsewhere, including an excellent book titled The Art of Electronics, by Horowitz and

Timing Analysis in Embedded Systems 261

Hill. If you don’t already have this very handy book—and you have to do much electronic
design or interfacing—you should definitely obtain a copy.

The real world is an analog place, and interfacing between the discrete, digital world of
computers and the real world demands significant attention. The interface between low-level
analog signals and logic is handled in another chapter of this book.

At this point, it is time to look at some simple examples so that we can see exactly how a
worst-case analysis should be performed. The next section illustrates part of the worst-case
analysis for a real laboratory instrument that is still used in the healthcare industry. This
product’s poor reliability was seriously inconvenient for the medical staff and patients who
depended on it, and if it had led to an incorrect diagnosis, a truly fatal error! It is in these types
of applications that worst-case design is most important, and the cost of unreliable hardware
in the field almost always greatly exceeds the cost of avoiding the problem by using proper
design and analysis techniques. Now let’s turn our attention to the analysis of the worst-case
noise margin for an 8051-based design example.

6.5 Design Example: Noise Margin Analysis Spreadsheet

The spreadsheet in Table 6.5 shows the results of a noise margin on a design that was already
in production at the time of the analysis. The product’s users had complained about intermit-
tent glitches, and the author was consulted to determine the source of the problem. After a
quick look at a few of the noise margin values, it became obvious that there were deficiencies
in the design in that area. A portion of the spreadsheet used in that analysis is shown in Table
6.5, with problems shown in bold italic underline font.

The first column of Table 6.5 is the signal name, followed by the pin number and chip that

is the source of the signal, followed by the source’s worst-case output voltages, Volmax and
Vohmin. The next columns list the loads on the signals and their respective worst-case input
voltages Vilmax and Vihmin. The noise margins are shown in the last two columns, Vil-Vol
for the logic zero case and Voh—Vih for the logic one case. As shown, the logic zero noise
margins are all probably acceptable, since the lowest value is 0.3 V. The logic one noise
margin is zero or negative for most of the devices listed, which is completely unacceptable.
Any noise on the power supply, ground, or the signal lines themselves can easily cause a
logic input to interpret the wrong logic state, causing an error. An interesting thing to observe
is that none of them were very far out of spec, and the instrument worked perfectly most of
the time. These problems can be virtually impossible to find in the field. Hooking up a test
instrument like a scope or logic analyzer to the problem signals often makes the problem

go away due to changing the ground currents and impedances of the circuit. The specs that
cause the problem in this case are the high Vih specs of the loads, especially the SRAM chip.
The example design in the spreadsheet represents a relatively common problem with devices

g
3
B
3
o
g
3
o
)
T
=
o
7]
7]
o
()
3

Table 6.5: 8051 Noise Margin Analysis Sample.

Output Input Noise Margin

Signal Pin(s) Source Volmax Vohmin Load(s) Signal Vilmax Vihmin logic zero logic one
PSEN/ 29 8051 0.40 2.00 EPROM OE/ 0.80 2.00 0.40 0.00
RD/ 17 8051 0.40 2.00 SRAM OE/ 0.80 2.20 0.40 0.20
(P3.7) 0.40 2.00 82C55 RD/ 0.80 2.00 0.40 0.00
WR/ 16 8051 0.40 2.00 SRAM WR/ 0.80 2.20 0.40 —0.20
(P3.6) 0.40 2.00 82C55 WR/ 0.80 2.00 0.40 0.00
A15(P2.7) 28 8051 0.40 2.00 74LS138A 0.80 2.00 0.40 0.00
A8..14 21-27 8051 0.40 2.00 SRAM A8..14 0.80 2.20 0.40 —0.20
(P2.0-P2.6) 0.40 2.00 EPROM A8..14 0.80 2.00 0.40 0.00
0.40 2.00 GAL A8..14 0.80 2.00 0.40 0.00
ALE 30 8051 0.40 2.00 74LS373LE 0.80 2.00 0.40 0.00
ADO..7 39-32 8051 0.40 2.00 74LS373 A0..7 0.80 2.00 0.40 0.00
(P0.0-P0.7) 0.40 2.00 SRAM DO..7 0.80 2.20 0.40 —0.20
0.40 2.00 82C55 DO0..7 0.80 2.00 0.40 0.00
SRAM 0.40 2.20 8051 DO0..7 0.80 2.40 0.40 —0.20
EPROM 0.45 2.40 8051 DO0..7 0.80 2.40 0.35 0.00
82C55 0.40 3.50 8051 DO0..7 0.80 2.40 0.40 1.10
RAM enable 16V8 0.50 2.40 SRAM /CE 0.80 2.20 0.30 0.20
EPROM enable 16V8 0.50 2.40 EPROM /CE 0.80 2.00 0.30 0.40

29z

9 421dpy>

Timing Analysis in Embedded Systems 263

that are advertised as “compatible” with other logic families. The solution to the problem is
very simple and inexpensive: the addition of pull-up resistors to the signals that have zero

or negative noise margin in the logic one state. This also impacts the output low current that
must be handled by the signal source chip outputs, so it must be taken into account in the load
analysis, and pull-up resistors should be chosen accordingly.

It is important to note that there are four sources listed for ADO .. 7, since there are four
devices that drive the data bus. Only the data paths that are used need to be evaluated vs.
loading analysis, where unused paths load the bus. The load analysis for another similar
design is shown in Table 6.6, which tabulates the capabilities of the various driving devices
and the loads that are presented to them. The first three columns (signal, pin, and source)
identify the signal source; the next three (IOL, IOH, and CL) list the corresponding source’s
output drive current and capacitive load values. The next two columns (load, and signal)
identify the load’s signal names. The Qty column is the number of loads in the case of
multiple signals connected to the same output or the number of inches of wire in the case of
the wire capacitance. The next three columns (IIL, ITH, and Cin) define the load characteristic
of a single input’s input current and input capacitance. For the interconnect wiring, Cin is the
estimated stray wiring capacitance per inch of the printed circuit trace. The last three columns
show the extended totals and grand totals for each signal, followed by the design margin,
which should be a positive number. In this case there is only one problem, due to excessive
capacitive loading of the SRAM when it drives the data bus, ADO .. 7.

The output capacitive load specs are usually found as notes within the AC section of the chip
specification listing the various timing parameters. This is because the capacitive loading
affects the rise and fall time of the signal, so the capacitance value is really used as a test
condition for the timing measurements. Input capacitance may be difficult to find in the
specification sheet, it might be in a different “family” specification sheet or handbook, or
might not be specified at all. When it is not specified, a reasonable estimate can be made by
substituting values for similar parts in the same type of package.

The SRAM output is specified with a Cload value of 50 pF, which is relatively low value. By
using a very low load capacitance, the SRAM’s timing specs look good due to shorter than
normal rise and fall times, since the chip is not driving a realistic load. This is a good example
of a manufacturer’s “specsmanship.” They are intentionally playing games with the test
conditions to make their device appear to be better than it is. That way when someone looks
at their timing specs, the shorter rise and fall times make their chip appear to be faster than
another equivalent chip that is specified with a larger capacitive load value when the chips are
actually identical. Unfortunately, this practice is all too common, so the designer must view
the claims on the cover of a data sheet very critically. If it looks too good to be true, then it

probably is!

g
3
B
3
o
g
3
o
)
T
=
o
7]
7]
o
()
3

Table 6.6: Load analysis for a similar design.

Source Load Unit Load Total
uA uA pF uA uA pF uA uA pF
Signal Pin# Source | IOL IOH CL Load Signal | Qty | IIL 1IH Cin 1L IIH Cin
PSEN/ 29 8